Galois structure of de Rham cohomology

Ted Chinburg

Journal de théorie des nombres de Bordeaux (1992)

  • Volume: 4, Issue: 1, page 1-18
  • ISSN: 1246-7405

How to cite

top

Chinburg, Ted. "Galois structure of de Rham cohomology." Journal de théorie des nombres de Bordeaux 4.1 (1992): 1-18. <http://eudml.org/doc/93555>.

@article{Chinburg1992,
author = {Chinburg, Ted},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Galois structure of de Rham cohomology; tamely ramified cover of schemes; Euler characteristic in Grothendieck groups; rings of integers},
language = {eng},
number = {1},
pages = {1-18},
publisher = {Université Bordeaux I},
title = {Galois structure of de Rham cohomology},
url = {http://eudml.org/doc/93555},
volume = {4},
year = {1992},
}

TY - JOUR
AU - Chinburg, Ted
TI - Galois structure of de Rham cohomology
JO - Journal de théorie des nombres de Bordeaux
PY - 1992
PB - Université Bordeaux I
VL - 4
IS - 1
SP - 1
EP - 18
LA - eng
KW - Galois structure of de Rham cohomology; tamely ramified cover of schemes; Euler characteristic in Grothendieck groups; rings of integers
UR - http://eudml.org/doc/93555
ER -

References

top
  1. [C] Chinburg T., Galois structure of de Rham cohomology of tame covers of schemes, (To appear). Zbl0828.14007MR1274097
  2. [E-L] Ellingsrud G. and Lønsted K., An equivariant Lefschetz formula for finite reductive groups, Math. Ann., 251, 253 - 261 (1980). Zbl0425.14012MR589254
  3. [F] Fröhlich A., Galois Module Structure of Algebraic Integers, Heidelberg - New York - Tokyo: Springer - Verlag (1983). Zbl0501.12012MR717033
  4. [EGA 1] Grothendieck A. and Dieudonné J., Eléments de Géométrie Algebrique ( EGA I); Le language des schémas., Inst. Hautes Études Sci. Publ. Math.4. 
  5. [EGA III] Grothendieck A. and Dieudonné J., Eléments de Géométrie Algebrique ( EGA III ); Étude cohomologique des faisceaux cohérents., Inst. Hautes Études Sci. Publ. Math.8. 
  6. [G-M] Grothendieck A. and Murre J.P., The Tame Fundamental Group of a Formal Neighborhood of a Divisor with Normal Crossings on a Scheme., (Lect. Notes in Math, vol. 208). Berlin - Heidelberg - New York: Springer - Verlag (1971). Zbl0216.33001MR316453
  7. [H1] Hartshorne R., Algebraic Geometry., New York- Heidelberg- Berlin: Springer - Verlag (1977). Zbl0367.14001MR463157
  8. [H2] Hartshorne R., Residues and Duality., (Lect. Notes in Math, vol. 20). Berlin - Heidelberg - New York: Springer - Verlag (1966). Zbl0212.26101MR222093
  9. [L] Lang S., Algebraic Number Theory., U. S. A.: Addison Wesley (1970). Zbl0211.38404MR282947
  10. [M] Milne J., Étale Cohomology., Princeton, N. J.: Princeton Univ. Press (1980). Zbl0433.14012MR559531
  11. [N1] Nakajima S., Galois module structure of cohomology groups for tamely ramified coverings of algebraic varieties, J. Number Theory22, 115 -123. Zbl0602.14017MR821138
  12. [N2] Nakajima S., On Galois module structure of the cohomology groups of an algebraic variety, Invent. Math.75, 1 -8. Zbl0616.14007MR728135
  13. [S1] Serre J.-P., Corps Locaux (2nd ed.), Paris: Hermann (1968). MR354618
  14. [S2] Serre J.-P., Linear Representations of Finite Groups., New York - Heidelberg- Berlin: Springer - Verlag (1977). Zbl0355.20006MR450380
  15. [T] Taylor M.J., On Frõhlich's Conjecture for Rings of Integers of Tame Extensions, Invent. Math63, 41 -79. Zbl0469.12003MR608528

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.