Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis
- [1] Department of Mathematics University of California, San Diego La Jolla, California, 92093, USA Current address : Department of Mathematics Oregon State University 368 Kidder Hall Corvallis, Oregon, 97331, USA
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 2, page 425-445
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMcGown, Kevin J.. "Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 425-445. <http://eudml.org/doc/251115>.
@article{McGown2012,
abstract = {Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminant\[ \Delta =7^2,9^2,13^2,19^2,31^2,37^2,43^2,61^2,67^2,103^2,109^2,127^2,157^2 \,. \]A large part of the proof is in establishing the following more general result: Let $K$ be a Galois number field of odd prime degree $\ell $ and conductor $f$. Assume the GRH for $\zeta _K(s)$. If\[ 38(\ell -1)^2(\log f)^6\log \log f<f \,, \]then $K$ is not norm-Euclidean.},
affiliation = {Department of Mathematics University of California, San Diego La Jolla, California, 92093, USA Current address : Department of Mathematics Oregon State University 368 Kidder Hall Corvallis, Oregon, 97331, USA},
author = {McGown, Kevin J.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {norm-Euclidean; Galois fields; cubic fields; GRH; Dirichlet characters; norm-Euclidean rings; number fields; cyclic extensions; cubic extensions; Dirichlet character; Riemann hypothesis},
language = {eng},
month = {6},
number = {2},
pages = {425-445},
publisher = {Société Arithmétique de Bordeaux},
title = {Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis},
url = {http://eudml.org/doc/251115},
volume = {24},
year = {2012},
}
TY - JOUR
AU - McGown, Kevin J.
TI - Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 425
EP - 445
AB - Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminant\[ \Delta =7^2,9^2,13^2,19^2,31^2,37^2,43^2,61^2,67^2,103^2,109^2,127^2,157^2 \,. \]A large part of the proof is in establishing the following more general result: Let $K$ be a Galois number field of odd prime degree $\ell $ and conductor $f$. Assume the GRH for $\zeta _K(s)$. If\[ 38(\ell -1)^2(\log f)^6\log \log f<f \,, \]then $K$ is not norm-Euclidean.
LA - eng
KW - norm-Euclidean; Galois fields; cubic fields; GRH; Dirichlet characters; norm-Euclidean rings; number fields; cyclic extensions; cubic extensions; Dirichlet character; Riemann hypothesis
UR - http://eudml.org/doc/251115
ER -
References
top- N. C. Ankeny, The least quadratic non residue. Ann. of Math. (2) 55 (1952), 65–72. Zbl0046.04006MR45159
- E. Bach, Explicit bounds for primality testing and related problems. Math. Comp. 55 (1990), no. 191, 355–380. Zbl0701.11075MR1023756
- H. Davenport, Multiplicative number theory, third edition. Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000, Revised and with a preface by Hugh L. Montgomery. Zbl0453.10002MR1790423
- H. J. Godwin and J. R. Smith, On the Euclidean nature of four cyclic cubic fields. Math. Comp. 60 (1993), no. 201, 421–423. Zbl0795.11055MR1149291
- H. Heilbronn, On Euclid’s algorithm in cubic self-conjugate fields. Proc. Cambridge Philos. Soc. 46 (1950), 377–382. Zbl0036.30101MR35313
- Y. Ihara, V. K. Murty, and M. Shimura, On the logarithmic derivatives of Dirichlet -functions at . Acta Arith. 137 (2009), no. 3, 253–276. Zbl1213.11159MR2496464
- J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem. Algebraic number fields: -functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 409–464. Zbl0362.12011MR447191
- E. Landau, Zur Theorie der Heckeschen Zetafunktionen, welche komplexen Charakteren entsprechen. Math. Z. 4 (1919), no. 1-2, 152–162. Zbl47.0164.01MR1544358
- F. Lemmermeyer, The Euclidean algorithm in algebraic number fields. Exposition. Math. 13 (1995), no. 5, 385–416. Zbl0843.11046MR1362867
- K. J. McGown, Norm-Euclidean cyclic fields of prime degree. Int. J. Number Theory (to appear). Zbl1290.11147MR2887892
- H. L. Montgomery, Topics in multiplicative number theory. Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin, 1971. Zbl0216.03501MR337847
- W. Narkiewicz, Elementary and analytic theory of algebraic numbers, second edition. Springer-Verlag, Berlin, 1990. Zbl0717.11045MR1055830
- A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119–141. Zbl0722.11054MR1061762
- G. Poitou, Minorations de discriminants (d’après A. M. Odlyzko). Séminaire Bourbaki, Vol. 1975/76 28ème année, Exp. No. 479, Springer, Berlin, 1977, pp. 136–153. Lecture Notes in Math., Vol. 567. Zbl0359.12010MR435033
- G. Poitou, Sur les petits discriminants. Séminaire Delange-Pisot-Poitou, 18e année: (1976/77), Théorie des nombres, Fasc. 1, Secrétariat Math., Paris, 1977, pp. Exp. No. 6, 18. Zbl0393.12010MR551335
- H. M. Stark, Some effective cases of the Brauer-Siegel theorem. Invent. Math. 23 (1974), 135–152. Zbl0278.12005MR342472
- H. M. Stark, The analytic theory of algebraic numbers. Bull. Amer. Math. Soc. 81 (1975), no. 6, 961–972. Zbl0329.12010MR444611
- A. Weil, Sur les “formules explicites” de la théorie des nombres premiers. Comm. Sém. Math. Univ. Lund (1952), 252–265. Zbl0049.03205MR53152
- A. Weil, Sur les formules explicites de la théorie des nombres. Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 3–18. Zbl0245.12010MR379440
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.