Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis

Kevin J. McGown[1]

  • [1] Department of Mathematics University of California, San Diego La Jolla, California, 92093, USA Current address : Department of Mathematics Oregon State University 368 Kidder Hall Corvallis, Oregon, 97331, USA

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 2, page 425-445
  • ISSN: 1246-7405

Abstract

top
Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminant Δ = 7 2 , 9 2 , 13 2 , 19 2 , 31 2 , 37 2 , 43 2 , 61 2 , 67 2 , 103 2 , 109 2 , 127 2 , 157 2 . A large part of the proof is in establishing the following more general result: Let K be a Galois number field of odd prime degree and conductor f . Assume the GRH for ζ K ( s ) . If 38 ( - 1 ) 2 ( log f ) 6 log log f < f , then K is not norm-Euclidean.

How to cite

top

McGown, Kevin J.. "Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 425-445. <http://eudml.org/doc/251115>.

@article{McGown2012,
abstract = {Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminant\[ \Delta =7^2,9^2,13^2,19^2,31^2,37^2,43^2,61^2,67^2,103^2,109^2,127^2,157^2 \,. \]A large part of the proof is in establishing the following more general result: Let $K$ be a Galois number field of odd prime degree $\ell $ and conductor $f$. Assume the GRH for $\zeta _K(s)$. If\[ 38(\ell -1)^2(\log f)^6\log \log f&lt;f \,, \]then $K$ is not norm-Euclidean.},
affiliation = {Department of Mathematics University of California, San Diego La Jolla, California, 92093, USA Current address : Department of Mathematics Oregon State University 368 Kidder Hall Corvallis, Oregon, 97331, USA},
author = {McGown, Kevin J.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {norm-Euclidean; Galois fields; cubic fields; GRH; Dirichlet characters; norm-Euclidean rings; number fields; cyclic extensions; cubic extensions; Dirichlet character; Riemann hypothesis},
language = {eng},
month = {6},
number = {2},
pages = {425-445},
publisher = {Société Arithmétique de Bordeaux},
title = {Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis},
url = {http://eudml.org/doc/251115},
volume = {24},
year = {2012},
}

TY - JOUR
AU - McGown, Kevin J.
TI - Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 425
EP - 445
AB - Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminant\[ \Delta =7^2,9^2,13^2,19^2,31^2,37^2,43^2,61^2,67^2,103^2,109^2,127^2,157^2 \,. \]A large part of the proof is in establishing the following more general result: Let $K$ be a Galois number field of odd prime degree $\ell $ and conductor $f$. Assume the GRH for $\zeta _K(s)$. If\[ 38(\ell -1)^2(\log f)^6\log \log f&lt;f \,, \]then $K$ is not norm-Euclidean.
LA - eng
KW - norm-Euclidean; Galois fields; cubic fields; GRH; Dirichlet characters; norm-Euclidean rings; number fields; cyclic extensions; cubic extensions; Dirichlet character; Riemann hypothesis
UR - http://eudml.org/doc/251115
ER -

References

top
  1. N. C. Ankeny, The least quadratic non residue. Ann. of Math. (2) 55 (1952), 65–72. Zbl0046.04006MR45159
  2. E. Bach, Explicit bounds for primality testing and related problems. Math. Comp. 55 (1990), no. 191, 355–380. Zbl0701.11075MR1023756
  3. H. Davenport, Multiplicative number theory, third edition. Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000, Revised and with a preface by Hugh L. Montgomery. Zbl0453.10002MR1790423
  4. H. J. Godwin and J. R. Smith, On the Euclidean nature of four cyclic cubic fields. Math. Comp. 60 (1993), no. 201, 421–423. Zbl0795.11055MR1149291
  5. H. Heilbronn, On Euclid’s algorithm in cubic self-conjugate fields. Proc. Cambridge Philos. Soc. 46 (1950), 377–382. Zbl0036.30101MR35313
  6. Y. Ihara, V. K. Murty, and M. Shimura, On the logarithmic derivatives of Dirichlet L -functions at s = 1 . Acta Arith. 137 (2009), no. 3, 253–276. Zbl1213.11159MR2496464
  7. J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem. Algebraic number fields: L -functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 409–464. Zbl0362.12011MR447191
  8. E. Landau, Zur Theorie der Heckeschen Zetafunktionen, welche komplexen Charakteren entsprechen. Math. Z. 4 (1919), no. 1-2, 152–162. Zbl47.0164.01MR1544358
  9. F. Lemmermeyer, The Euclidean algorithm in algebraic number fields. Exposition. Math. 13 (1995), no. 5, 385–416. Zbl0843.11046MR1362867
  10. K. J. McGown, Norm-Euclidean cyclic fields of prime degree. Int. J. Number Theory (to appear). Zbl1290.11147MR2887892
  11. H. L. Montgomery, Topics in multiplicative number theory. Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin, 1971. Zbl0216.03501MR337847
  12. W. Narkiewicz, Elementary and analytic theory of algebraic numbers, second edition. Springer-Verlag, Berlin, 1990. Zbl0717.11045MR1055830
  13. A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119–141. Zbl0722.11054MR1061762
  14. G. Poitou, Minorations de discriminants (d’après A. M. Odlyzko). Séminaire Bourbaki, Vol. 1975/76 28ème année, Exp. No. 479, Springer, Berlin, 1977, pp. 136–153. Lecture Notes in Math., Vol. 567. Zbl0359.12010MR435033
  15. G. Poitou, Sur les petits discriminants. Séminaire Delange-Pisot-Poitou, 18e année: (1976/77), Théorie des nombres, Fasc. 1, Secrétariat Math., Paris, 1977, pp. Exp. No. 6, 18. Zbl0393.12010MR551335
  16. H. M. Stark, Some effective cases of the Brauer-Siegel theorem. Invent. Math. 23 (1974), 135–152. Zbl0278.12005MR342472
  17. H. M. Stark, The analytic theory of algebraic numbers. Bull. Amer. Math. Soc. 81 (1975), no. 6, 961–972. Zbl0329.12010MR444611
  18. A. Weil, Sur les “formules explicites” de la théorie des nombres premiers. Comm. Sém. Math. Univ. Lund (1952), 252–265. Zbl0049.03205MR53152
  19. A. Weil, Sur les formules explicites de la théorie des nombres. Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 3–18. Zbl0245.12010MR379440

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.