Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results
Journal de théorie des nombres de Bordeaux (1990)
- Volume: 2, Issue: 1, page 119-141
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topOdlyzko, A. M.. "Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results." Journal de théorie des nombres de Bordeaux 2.1 (1990): 119-141. <http://eudml.org/doc/93506>.
@article{Odlyzko1990,
abstract = {A bibliography of recent papers on lower bounds for discriminants of number fields and related topics is presented. Some of the main methods, results, and open problems are discussed.},
author = {Odlyzko, A. M.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {discriminants; class numbers; regulators; zeta functions; tables; bibliography},
language = {eng},
number = {1},
pages = {119-141},
publisher = {Université Bordeaux I},
title = {Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results},
url = {http://eudml.org/doc/93506},
volume = {2},
year = {1990},
}
TY - JOUR
AU - Odlyzko, A. M.
TI - Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results
JO - Journal de théorie des nombres de Bordeaux
PY - 1990
PB - Université Bordeaux I
VL - 2
IS - 1
SP - 119
EP - 141
AB - A bibliography of recent papers on lower bounds for discriminants of number fields and related topics is presented. Some of the main methods, results, and open problems are discussed.
LA - eng
KW - discriminants; class numbers; regulators; zeta functions; tables; bibliography
UR - http://eudml.org/doc/93506
ER -
References
top- 1 W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, PWN-Polish Scientific PublishersWarsaw (1974). MR 50# 268. (Very complete references for work before 1973.) Zbl0276.12002MR347767
- 2 L.C. Washington, Introduction to Cyclotomic Fields, Springer. 1982. MR 85g: 11001. Zbl0484.12001MR718674
- 3 J. Martinet, Méthodes géométriques dans la recherche des petits discriminants. pp. 147-179, Séminaire Théorie des Nombres, Paris, 1983-84, C. Goldstein éd., BirkhäuserBoston, 1985. MR 88h:11083. Zbl0567.12009MR902831
- 1 H.M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. math.23 (1974), 135-152. MR 49 # 7218. Zbl0278.12005MR342472
- 2 H.M. Stark, The analytic theory of algebraic numbers, Bull. Am. Math. Soc.81 (1975), 961-972. MR 56 # 2961. Zbl0329.12010MR444611
- 3 A.M. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. math.29 (1975), 275-286. MR 51 # 12788. Zbl0306.12005MR376613
- 4 A.M. Odlyzko, Lower bounds. for discriminants of number fields, Acta Arith.29 (1976), 275-297. MR 53 # 5531. Zbl0286.12006MR401704
- 5 A.M. Odplyzko, Lower bounds for discriminants of number fields. II. MR 56 # 309. Zbl0362.12005
- 6 A.M. Odlyzko, On conductors and discriminants. pp. 377-407, Algebraic Number Fields, (Proc. 1975 Durham Symp.), A. Fröhlich, ed., Academic Press1977. MR 56 #11961. Zbl0362.12006MR453701
- 7 J.-P. Serre, Minorations de discriminants. note of October 1975, published on pp. 240-243 in vol. 3 of Jean-Pierre Serre, Collected Papers, Springer1986.
- 8 A.M. Odlyzko, Discriminant bounds. tables dated Nov. 29, 1976 (unpublished). Some of these bounds are included in Ref. B12.
- 9 G. Poitou, Minorations de discriminants (d'après A.M. Odlyzko), Séminaire Bourbaki. Vol. 1975/76 28ème année, Exp. No. 479, pp. 136-153, Lecture Notes in Math. #567, Springer1977. MR 55 #7995. Zbl0359.12010MR435033
- 10 G. Poitou, Sur les petits discriminants, Séminaire Delange-Pisot-Poitou. 18e année: (1976/77), Théorie des nombres, Fasc. 1, Exp. No. 6, 18pp., Secrétariat Math., Paris, 1977. MR 81i:12007. Zbl0393.12010MR551335
- 11 F. Diaz Y. Diaz, Tables minorant la racine n-ième du discriminant d'un corps de degré n. Publications Mathématiques d'Orsay 80.06. Université de Paris-Sud, Département de Mathématique, Orsay, (1980). 59 pp. MR 82i:12007. (Some of these bounds are included in Ref. B12.) Zbl0482.12003MR607864
- 12 J. Martinet, Petits discriminants des corps de nombres. pp. 151-193, Journées Arithmétiques1980, J.V. Armitage, ed., Cambridge Univ. Press1982. MR 84g:12009. Zbl0491.12005MR697261
- 1 H.W. Lenstra, Euclidean number fields of large degree, Invent. math.38 (1977), 237-254. MR 55 # 2836. Zbl0328.12007MR429826
- 2 J. Martinet, Tours de corps de classes et estimations de discriminants, Invent. math.44 (1978), 65-73.. MR 57 # 275. Zbl0369.12007MR460281
- 3 J. Martinet, Petits discriminants, Ann. Inst. Fourier (Grenoble) 29, no 1 (1979), 159-170. MR 81h:12006. Zbl0387.12006MR526782
- 4 R. Schoof, Infinite class field towers of quadratic fields, J. reine angew. Math.372 (1986), 209-220. MR 88a:11121. Zbl0589.12011MR863524
- 1 J.M. Masley, Odlyzko bounds and class number problems. pp. 465-474, Algebraic Number Fields (Proc. Durham Symp., 1975), A. Fröhlich, ed., Academic Press1977. MR 56 # 5493. Zbl0365.12007MR447178
- 2 J.M. Masley, Class numbers of real cyclic number fields with small conductor, Compositio Math.37 (1978), 297-319. MR 80e:12005. Zbl0428.12003MR511747
- 3 J.M. Masley, Where are number fields with small class numbers ?. pp. 221-242, Number Theory, Carbondale1979, Lecture Notes in Math. #751, Springer, 1979. MR 81f:12004. Zbl0421.12005MR564932
- 4 J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. math.55 (1979), 37-47. MR 80k:12019. Zbl0474.12009MR553994
- 5 J.M. Masley, Class groups of abelian number fields. pp. 475-497, Proc. Queen's Number Theory Conf. 1979, P. Ribenboim ed., Queen's Papers in Pure and Applied Mathematics no. 54, Queen's Univ., 1980, MR 83f:12007. Zbl0471.12007MR634704
- 6 J. Martinet, Sur la constante de Lenstra des corps de nombres, Sém. Theorie des Nombres de Bordeaux (1979-1980). Exp. #17, 21 pp., Univ. Bordeaux1980. MR 83b:12007. Zbl0457.12003MR604214
- 7 F.J. van der LINDEN, Class number computations of real abelian number fields, Math. Comp.39 (1982), 693-707. MR 84e:12005. Zbl0505.12010MR669662
- 8 A. Leutbecher and J. Martinet, Lenstra's constant and Euclidean number fields, Astérisque94 (1982), 87-131. MR 85b:11090. Zbl0499.12013MR702368
- 9 A. Leutbecher, Euclidean fields having a large Lenstra constant, Ann. Inst. Fourier (Grenoble) 35. no.2 (1985), 83-106. MR 86j:11107. Zbl0546.12005MR786536
- 10 J. Hoffstein and N. Jochnowitz, On Artin's conjecture and the class number of certain CM fields, Duke Math. J.59 (1989), 553-563. Zbl0711.11042MR1016903
- 11 J. Hoffstein and N. Jochnowitz, On Artin's conjecture and the class number of certain CM fields-II, Duke Math. J.59 (1989), 565-584. Zbl0711.11042MR1016903
- 1 M. Pohst, Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory9 (1977), 459-492. MR 57 # 268. Zbl0366.12011MR460274
- 2 G. Gras and M.-N. Gras, Calcul du nombre de classes et des unités des extensions abéliennes réelles de Q, Bull. Sci. Math.101 (2) (1977), 97-129. MR 58 # 586. Zbl0359.12007MR480423
- 3 M. Pohst, Eine Regulatorabschätzung, Abh. Math. Sem. Univ. Hamburg47 (1978), 95-106. MR 58 # 16596. Zbl0381.12006MR498487
- 4 R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. math.62 (1981), 367-380. MR 83g:12008. Zbl0456.12003MR604833
- 5 G. Poitou, Le théorème des classes jumelles de R. Zimmert, Sém. de Théorie des Nombres de Bordeaux (1983-1984). Exp. # 5, 4 pp., Univ. Bordeaux1984, (Listed in MR 86b:11003.) Zbl0543.12006MR784057
- 6 J. Oesterlé, Le théorème des classes jumelles de Zimmert et les formules explicites de Weil. pp. 181-197, Sém. Théorie des Nombres, Paris1983-84, C. Goldstein ed., BirkhäuserBoston, 1985. Zbl0569.12004MR902832
- 7 J. Silverman, An inequality connecting the regulator and the discriminant of a number field, J. Number Theory19 (1984), 437-442. MR 86c:11094. Zbl0552.12003MR769793
- 8 T.W. Cusick, Lower bounds for regulators. pp. 63-73 in Number Theory, Noordwijkerhout1983, H. Jager ed., Lecture Notes in Math. # 1068, Springer1984. MR 85k:11052. Zbl0549.12003MR756083
- 9 A.-M. Bergé and J. Martinet, Sur les minorations géométriques des régulateurs. pp. 23-50, Séminaire Théorie des Nombres, Paris1987- 88, C. Goldstein ed., BirkhäuserBoston, 1990. Zbl0699.12014MR1042763
- 10 E. Friedman, Analytic formulas for regulators of number fields, Invent. math.98 (1989), 599-622. Zbl0694.12006MR1022309
- 11 M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press. (1989). Zbl0685.12001MR1033013
- 12 R. Schoof and L.C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp.50 (1988), 543-556. Zbl0649.12007MR929552
- 13 A.-M. Bergé and J. Martinet, Notions relatives de régulateurs et de hauteurs, Acta Arith.54 (1989), 155-170. Zbl0642.12011MR1024424
- 14 A.-M. Bergé and J. Martinet, Minorations de hauteurs et petits régulateurs relatifs, Sém. Théorie des Nombres Bordeaux (1987-88). Exp.#11, Univ. Bordeaux1988. Zbl0699.12013
- 15 A. Costa and E. Friedman, Ratios of regulators in totally real extensions of number fields. to be published. Zbl0718.11060
- 16 E. Friedman and N.-P. Skoruppa, Explicit formulas for regulators and ratios of regulators of number fields. manuscript in preparation.
- 17 T.W. Cusick, The: egulator spectrum of totally real cubic fields. to appear. Zbl0736.11063MR1139098
- 1 P. Cartier and Y. Roy, On the enumeration of quintic fields with small discriminants, J. reine angew. Math268/269 (1974), 213-215. MR 50 # 2119. Zbl0285.12001MR349626
- 2 M. Pohst, Berechnung kleiner Diskriminanten total reeller algebraischer Zahlkörper, J. reine angew. Math.278/279 (1975), 278-300. MR 52 # 8085. Zbl0314.12014MR387242
- 3 M. Pohst, The minimum discriminant of seventh degree totally real algebraic number fields. pp. 235-240, Number theory and algebra, H. Zassenhaus ed., Academic Press1977. MR 57 # 5952. Zbl0373.12006MR466069
- 4 J. Liang and H. Zassenhaus, The minimum discriminant of sixth degree totally complex algebraic number field, J. Number Theory9 (1977), 16-35. MR 55 # 305. Zbl0345.12005MR427270
- 5 M. Pohst, On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields, J. Number Theory14 (1982), 99-117. MR 83g:12009. Zbl0478.12005MR644904
- 6 M. Pohst, P. Weiler, and H. Zassenhaus, On effective computation of fundamental units, Math. Comp.38 (1982), 293-329. MR 83e:12005b. Zbl0493.12005MR637308
- 7 D.G. Rish, On algebraic number fields of degree five, Vestnik Moskov. Univ. Ser. I Mat. Mekh. no 2, (1982), 76-80. English translation in Moscow Univ. Math. Bull.37 (1982), no. 99-103. MR 83g:12006. Zbl0512.12009MR655408
- 8 F. Diaz Y. Diaz, Valeurs minima du discriminant des corps de degré 7 ayant une seule place réelle, C.R. Acad. Sc. Paris296 (1983), 137-139. MR 84i:12004. Zbl0527.12007MR693185
- 9 F. Diaz Y. Diaz, Valeurs minima du discriminant pour certains types de corps de degré 7, Ann. Inst. Fourier (Grenoble) 34, no 3 (1984), 29-38. MR 86d:11091. Zbl0546.12004MR762692
- 10 K. Takeuchi, Totally real algebraic number fields of degree 5 and 6 with small discriminant, Saitama Math. J.2 (1984), 21-32. MR 86i:11060. Zbl0581.12002MR769447
- 11 H.J. Godwin, On quartic fields of signature one with small discriminant. II, Math. Comp.42 (1984). 707-711. Corrigendum, Math. Comp.43 (1984), 621. MR 85i:11092a, 11092b. Zbl0535.12003MR736462
- 12 F. Diaz Y. Diaz, Petits discriminants des corps de nombres totalement imaginaires de degré 8, J. Number Theory25 (1987), 34-52. Zbl0606.12005MR871167
- 13 S.-H. Kwon and J. Martinet, Sur les corps résolubles de degré premier, J. reine angew. Math.375/376 (1987), 12-23. MR 88g:11080. Zbl0601.12013MR882288
- 14 F. Diaz Y. Diaz, Discriminants minima et petits discriminants des corps de nombres de degré 7 avec cinq places réelles, J. London Math. Soc.38 (2) (1988), 33-46.. Zbl0653.12003MR949079
- 15 J. Buchmann and D. Ford, On the computation of totally real quartic fields of small discriminant, Math. Comp.52 (1989), 161-174. Zbl0668.12001MR946599
- 16 S.-H. Kwon, Sur les discriminants minimaux des corps quaternioniens. preprint 1987.
- 17 P. Llorente and J. Quer, On totally real cubic fields with discriminant D < 107, Math. Comp.50 (1988), 581-594. Zbl0651.12001MR929555
- 18 J. Buchmann, M. Pohst and J. v. Schmettow, On the computation of unit groups and class groups of totally real quartic fields, Math. Comp.53 (1989), 387-397. Zbl0714.11002MR970698
- 19 A.-M. Bergé, J. Martinet and M. Olivier, The computation of sextic fields with a quadratic subfield. in Math. Comp. to appear. Zbl0709.11056MR1011438
- 20 F. Diaz Y. Diaz, Table de corps quintiques totalement réels. Université de Paris-Sud, Département de Mathématiques, Orsay, Report no. 89-14, 35 pp., 1989.
- 21 M. Pohst, J. Martinet and F. Diaz Y. Diaz, The minimum discriminant of totally real octic fields, J. Number Theory. to appear. Zbl0719.11079
- 1 J. Hoffstein, Some results related to minimal discriminants. pp. 185-194, Number Theory, Carbondale1979, Lecture Notes in Math. # 751, Springer1979, MR 81d:12005. Zbl0418.12002MR564928
- 2 A. Neugebauer, On zeros of zeta functions in low rectangles in the critical strip. (in Polish), Ph.D. Thesis, A. Mickiewicz University, Poznan, Poland, 1985.
- 3 A. Neugebauer, On the zeros of the Dedekind zeta-function near the real axis, Funct. Approx. Comment. Math.16 (1988), 165-167. Zbl0677.12005MR965377
- 4 A. Neugebauer, Every Dedekind zeta-function has a zero in the rectangle 1/2 ≤ σ ≤ 1, 0 < t < 60,, Discuss. Math.. to appear. Zbl0592.12010
- 5 A.M. Odlyzko, Low zeros of Dedekind zeta function. manuscript in preparation. Zbl0615.10049
- 1 J.-F. Mestre, Formules explicites et minorations de conducteurs de variétés algébriques, Compositio Math.58 (1986), 209-232. MR 87j:11059. Zbl0607.14012MR844410
- 2 E. Friedman, The zero near 1 of an ideal class zeta function, J. London Math. Soc.35 (2) (1987). 1-17. MR 88g:11087. Zbl0583.12010MR871761
- 3 E. Friedman, Hecke's integral formula, Sém. Théorie des Nombres de Bordeaux (1987-88). Exp. #5, 23 pp., Univ. Bordeaux1988. Zbl0697.12010
- 1 E. Landau, Zur Theorie der Heckeschen Zetafunktionen, welche komplexen Charakteren entsprechen, Math. Zeit.4 (1919), 152-162.. Reprinted on pp. 176-186 of vol. 7, Edmund Landau: Collected Works, P.T. Bateman, et al., eds., Thales Verlag. Zbl47.0164.01MR1544358JFM47.0164.01
- 2 E. Landau, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, 2nd ed., Göttingen (1927). Reprinted by Chelsea, 1949. Zbl53.0141.09MR31002
- 3 R. Remak, Über die Abschätzung des absoluten Betrages des Regulators eines algebraischen Zahlkörpers nach unten, J. reine angew. Math.167. (1932), 360-378. Zbl0003.19801JFM58.0173.04
- 4 R.P. Boas and M. Kac, Inequalities for Fourier transforms of positive functions, Duke Math. J.12 (1945), 189-206. MR 6-265. Zbl0060.25602MR12152
- 5. A.P. Guinand, A summation formula in the theory of prime numbers, Proc. London Math. Soc.50 (2) (1948), 107-119. MR 10, 104g. Zbl0031.11003MR26086
- 6 A.P. Guinand, Fourier reciprocities and the Riemann zeta- function, Proc. London Math. Soc.51 (2) (1949), 401-414. MR 11, 162d. Zbl0039.11503MR31513
- 7 A. Weil, Sur les "formules explicites" de la théorie des nombres premiers, Comm. Sem. Math. Univ. Lund, tome supplémentaire (1952), 252-265. MR 14, 727e. Zbl0049.03205MR53152
- 8 R. Remak, Über Grössenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlkörpers, Compos. Math.10 (1952), 245-285. MR 14, 952d. Zbl0047.27202MR54641
- 9 R. Remak, Über algebraische Zahlkörper mit schwachem Einheitsdefekt, Compos. Math.12 (1954), 35-80. MR 16, 116a. Zbl0055.26805MR63403
- 10 A. Weil, Sur les formules explicites de la théorie des nombres, Izv. Akad. Nauk SSSR Ser. Mat.36 (1972). 3-18. MR 52 # 345. Reprinted in A. Weil, Oeuvres Scientifiques, vol. 3, pp. 249-264, Springer1979. Zbl0245.12010MR379440
- 11 H.-J. Besenfelder, Die Weilsche "Explizite Formel" und temperierte Distributionen, J. reine angew. Math.293/294 (1977), 228-257. MR 57 # 254. Zbl0354.12007MR460260
- 12 J.-P. Serre. note on p. 710 in vol. 3 of Jean-Pierre Serre, Collected Papers, Springer1986.
- 13 H. Cohen and H.W. Lenstra Jr., Heuristics on class groups of number fields. pp. 33-62 in Number Theory, Noordwijkerhout1983, H. Jager ed., Lecture Notes in Math. # 1068, Springer1984. MR 85j:11144. Zbl0558.12002MR756082
- 14 J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C.R. Acad. Sci. Paris296 (1983). sér. I, 397-402. MR 85b:14027. Reprinted on pp. 658-663 in vol. 3 of Jean-Pierre Serre, Collected Papers, Springer1986. Zbl0538.14015MR703906
- 15 A.M. Odlyzko and H.J.J. te Riele, Disproof of the Mertens conjecture, J. reine angew. Math.357 (1985), 138-160. MR 86m:11070. Zbl0544.10047MR783538
- 16 J.-M. Fontaine, Il n'y a pas de variété abélienne sur Z, Invent. math.81 (1985), 515-538. MR 87g:11073. Zbl0612.14043MR807070
- 17 H. Cohen and J. Martinet, Etude heuristique des groupes de classes des corps de nombres, J. reine angew. Math.404 (1990), 39-76. Zbl0699.12016MR1037430
- 18 A. Borel and G. Prasad, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Publ: Math. I.H.E.S.69 (1989), 119-171. Zbl0707.11032MR1019963
Citations in EuDML Documents
top- Sami Omar, Majoration du premier zéro de la fonction zêta de Dedekind
- Kevin J. McGown, Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis
- Mikhail Belolipetsky, On volumes of arithmetic quotients of
- Ken Yamamura, Maximal unramified extensions of imaginary quadratic number fields of small conductors
- Fabien Pazuki, Heights and regulators of number fields and elliptic curves
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.