Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results

A. M. Odlyzko

Journal de théorie des nombres de Bordeaux (1990)

  • Volume: 2, Issue: 1, page 119-141
  • ISSN: 1246-7405

Abstract

top
A bibliography of recent papers on lower bounds for discriminants of number fields and related topics is presented. Some of the main methods, results, and open problems are discussed.

How to cite

top

Odlyzko, A. M.. "Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results." Journal de théorie des nombres de Bordeaux 2.1 (1990): 119-141. <http://eudml.org/doc/93506>.

@article{Odlyzko1990,
abstract = {A bibliography of recent papers on lower bounds for discriminants of number fields and related topics is presented. Some of the main methods, results, and open problems are discussed.},
author = {Odlyzko, A. M.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {discriminants; class numbers; regulators; zeta functions; tables; bibliography},
language = {eng},
number = {1},
pages = {119-141},
publisher = {Université Bordeaux I},
title = {Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results},
url = {http://eudml.org/doc/93506},
volume = {2},
year = {1990},
}

TY - JOUR
AU - Odlyzko, A. M.
TI - Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results
JO - Journal de théorie des nombres de Bordeaux
PY - 1990
PB - Université Bordeaux I
VL - 2
IS - 1
SP - 119
EP - 141
AB - A bibliography of recent papers on lower bounds for discriminants of number fields and related topics is presented. Some of the main methods, results, and open problems are discussed.
LA - eng
KW - discriminants; class numbers; regulators; zeta functions; tables; bibliography
UR - http://eudml.org/doc/93506
ER -

References

top
  1. 1 W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, PWN-Polish Scientific PublishersWarsaw (1974). MR 50# 268. (Very complete references for work before 1973.) Zbl0276.12002MR347767
  2. 2 L.C. Washington, Introduction to Cyclotomic Fields, Springer. 1982. MR 85g: 11001. Zbl0484.12001MR718674
  3. 3 J. Martinet, Méthodes géométriques dans la recherche des petits discriminants. pp. 147-179, Séminaire Théorie des Nombres, Paris, 1983-84, C. Goldstein éd., BirkhäuserBoston, 1985. MR 88h:11083. Zbl0567.12009MR902831
  4. 1 H.M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. math.23 (1974), 135-152. MR 49 # 7218. Zbl0278.12005MR342472
  5. 2 H.M. Stark, The analytic theory of algebraic numbers, Bull. Am. Math. Soc.81 (1975), 961-972. MR 56 # 2961. Zbl0329.12010MR444611
  6. 3 A.M. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. math.29 (1975), 275-286. MR 51 # 12788. Zbl0306.12005MR376613
  7. 4 A.M. Odlyzko, Lower bounds. for discriminants of number fields, Acta Arith.29 (1976), 275-297. MR 53 # 5531. Zbl0286.12006MR401704
  8. 5 A.M. Odplyzko, Lower bounds for discriminants of number fields. II. MR 56 # 309. Zbl0362.12005
  9. 6 A.M. Odlyzko, On conductors and discriminants. pp. 377-407, Algebraic Number Fields, (Proc. 1975 Durham Symp.), A. Fröhlich, ed., Academic Press1977. MR 56 #11961. Zbl0362.12006MR453701
  10. 7 J.-P. Serre, Minorations de discriminants. note of October 1975, published on pp. 240-243 in vol. 3 of Jean-Pierre Serre, Collected Papers, Springer1986. 
  11. 8 A.M. Odlyzko, Discriminant bounds. tables dated Nov. 29, 1976 (unpublished). Some of these bounds are included in Ref. B12. 
  12. 9 G. Poitou, Minorations de discriminants (d'après A.M. Odlyzko), Séminaire Bourbaki. Vol. 1975/76 28ème année, Exp. No. 479, pp. 136-153, Lecture Notes in Math. #567, Springer1977. MR 55 #7995. Zbl0359.12010MR435033
  13. 10 G. Poitou, Sur les petits discriminants, Séminaire Delange-Pisot-Poitou. 18e année: (1976/77), Théorie des nombres, Fasc. 1, Exp. No. 6, 18pp., Secrétariat Math., Paris, 1977. MR 81i:12007. Zbl0393.12010MR551335
  14. 11 F. Diaz Y. Diaz, Tables minorant la racine n-ième du discriminant d'un corps de degré n. Publications Mathématiques d'Orsay 80.06. Université de Paris-Sud, Département de Mathématique, Orsay, (1980). 59 pp. MR 82i:12007. (Some of these bounds are included in Ref. B12.) Zbl0482.12003MR607864
  15. 12 J. Martinet, Petits discriminants des corps de nombres. pp. 151-193, Journées Arithmétiques1980, J.V. Armitage, ed., Cambridge Univ. Press1982. MR 84g:12009. Zbl0491.12005MR697261
  16. 1 H.W. Lenstra, Euclidean number fields of large degree, Invent. math.38 (1977), 237-254. MR 55 # 2836. Zbl0328.12007MR429826
  17. 2 J. Martinet, Tours de corps de classes et estimations de discriminants, Invent. math.44 (1978), 65-73.. MR 57 # 275. Zbl0369.12007MR460281
  18. 3 J. Martinet, Petits discriminants, Ann. Inst. Fourier (Grenoble) 29, no 1 (1979), 159-170. MR 81h:12006. Zbl0387.12006MR526782
  19. 4 R. Schoof, Infinite class field towers of quadratic fields, J. reine angew. Math.372 (1986), 209-220. MR 88a:11121. Zbl0589.12011MR863524
  20. 1 J.M. Masley, Odlyzko bounds and class number problems. pp. 465-474, Algebraic Number Fields (Proc. Durham Symp., 1975), A. Fröhlich, ed., Academic Press1977. MR 56 # 5493. Zbl0365.12007MR447178
  21. 2 J.M. Masley, Class numbers of real cyclic number fields with small conductor, Compositio Math.37 (1978), 297-319. MR 80e:12005. Zbl0428.12003MR511747
  22. 3 J.M. Masley, Where are number fields with small class numbers ?. pp. 221-242, Number Theory, Carbondale1979, Lecture Notes in Math. #751, Springer, 1979. MR 81f:12004. Zbl0421.12005MR564932
  23. 4 J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. math.55 (1979), 37-47. MR 80k:12019. Zbl0474.12009MR553994
  24. 5 J.M. Masley, Class groups of abelian number fields. pp. 475-497, Proc. Queen's Number Theory Conf. 1979, P. Ribenboim ed., Queen's Papers in Pure and Applied Mathematics no. 54, Queen's Univ., 1980, MR 83f:12007. Zbl0471.12007MR634704
  25. 6 J. Martinet, Sur la constante de Lenstra des corps de nombres, Sém. Theorie des Nombres de Bordeaux (1979-1980). Exp. #17, 21 pp., Univ. Bordeaux1980. MR 83b:12007. Zbl0457.12003MR604214
  26. 7 F.J. van der LINDEN, Class number computations of real abelian number fields, Math. Comp.39 (1982), 693-707. MR 84e:12005. Zbl0505.12010MR669662
  27. 8 A. Leutbecher and J. Martinet, Lenstra's constant and Euclidean number fields, Astérisque94 (1982), 87-131. MR 85b:11090. Zbl0499.12013MR702368
  28. 9 A. Leutbecher, Euclidean fields having a large Lenstra constant, Ann. Inst. Fourier (Grenoble) 35. no.2 (1985), 83-106. MR 86j:11107. Zbl0546.12005MR786536
  29. 10 J. Hoffstein and N. Jochnowitz, On Artin's conjecture and the class number of certain CM fields, Duke Math. J.59 (1989), 553-563. Zbl0711.11042MR1016903
  30. 11 J. Hoffstein and N. Jochnowitz, On Artin's conjecture and the class number of certain CM fields-II, Duke Math. J.59 (1989), 565-584. Zbl0711.11042MR1016903
  31. 1 M. Pohst, Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory9 (1977), 459-492. MR 57 # 268. Zbl0366.12011MR460274
  32. 2 G. Gras and M.-N. Gras, Calcul du nombre de classes et des unités des extensions abéliennes réelles de Q, Bull. Sci. Math.101 (2) (1977), 97-129. MR 58 # 586. Zbl0359.12007MR480423
  33. 3 M. Pohst, Eine Regulatorabschätzung, Abh. Math. Sem. Univ. Hamburg47 (1978), 95-106. MR 58 # 16596. Zbl0381.12006MR498487
  34. 4 R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. math.62 (1981), 367-380. MR 83g:12008. Zbl0456.12003MR604833
  35. 5 G. Poitou, Le théorème des classes jumelles de R. Zimmert, Sém. de Théorie des Nombres de Bordeaux (1983-1984). Exp. # 5, 4 pp., Univ. Bordeaux1984, (Listed in MR 86b:11003.) Zbl0543.12006MR784057
  36. 6 J. Oesterlé, Le théorème des classes jumelles de Zimmert et les formules explicites de Weil. pp. 181-197, Sém. Théorie des Nombres, Paris1983-84, C. Goldstein ed., BirkhäuserBoston, 1985. Zbl0569.12004MR902832
  37. 7 J. Silverman, An inequality connecting the regulator and the discriminant of a number field, J. Number Theory19 (1984), 437-442. MR 86c:11094. Zbl0552.12003MR769793
  38. 8 T.W. Cusick, Lower bounds for regulators. pp. 63-73 in Number Theory, Noordwijkerhout1983, H. Jager ed., Lecture Notes in Math. # 1068, Springer1984. MR 85k:11052. Zbl0549.12003MR756083
  39. 9 A.-M. Bergé and J. Martinet, Sur les minorations géométriques des régulateurs. pp. 23-50, Séminaire Théorie des Nombres, Paris1987- 88, C. Goldstein ed., BirkhäuserBoston, 1990. Zbl0699.12014MR1042763
  40. 10 E. Friedman, Analytic formulas for regulators of number fields, Invent. math.98 (1989), 599-622. Zbl0694.12006MR1022309
  41. 11 M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press. (1989). Zbl0685.12001MR1033013
  42. 12 R. Schoof and L.C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp.50 (1988), 543-556. Zbl0649.12007MR929552
  43. 13 A.-M. Bergé and J. Martinet, Notions relatives de régulateurs et de hauteurs, Acta Arith.54 (1989), 155-170. Zbl0642.12011MR1024424
  44. 14 A.-M. Bergé and J. Martinet, Minorations de hauteurs et petits régulateurs relatifs, Sém. Théorie des Nombres Bordeaux (1987-88). Exp.#11, Univ. Bordeaux1988. Zbl0699.12013
  45. 15 A. Costa and E. Friedman, Ratios of regulators in totally real extensions of number fields. to be published. Zbl0718.11060
  46. 16 E. Friedman and N.-P. Skoruppa, Explicit formulas for regulators and ratios of regulators of number fields. manuscript in preparation. 
  47. 17 T.W. Cusick, The: egulator spectrum of totally real cubic fields. to appear. Zbl0736.11063MR1139098
  48. 1 P. Cartier and Y. Roy, On the enumeration of quintic fields with small discriminants, J. reine angew. Math268/269 (1974), 213-215. MR 50 # 2119. Zbl0285.12001MR349626
  49. 2 M. Pohst, Berechnung kleiner Diskriminanten total reeller algebraischer Zahlkörper, J. reine angew. Math.278/279 (1975), 278-300. MR 52 # 8085. Zbl0314.12014MR387242
  50. 3 M. Pohst, The minimum discriminant of seventh degree totally real algebraic number fields. pp. 235-240, Number theory and algebra, H. Zassenhaus ed., Academic Press1977. MR 57 # 5952. Zbl0373.12006MR466069
  51. 4 J. Liang and H. Zassenhaus, The minimum discriminant of sixth degree totally complex algebraic number field, J. Number Theory9 (1977), 16-35. MR 55 # 305. Zbl0345.12005MR427270
  52. 5 M. Pohst, On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields, J. Number Theory14 (1982), 99-117. MR 83g:12009. Zbl0478.12005MR644904
  53. 6 M. Pohst, P. Weiler, and H. Zassenhaus, On effective computation of fundamental units, Math. Comp.38 (1982), 293-329. MR 83e:12005b. Zbl0493.12005MR637308
  54. 7 D.G. Rish, On algebraic number fields of degree five, Vestnik Moskov. Univ. Ser. I Mat. Mekh. no 2, (1982), 76-80. English translation in Moscow Univ. Math. Bull.37 (1982), no. 99-103. MR 83g:12006. Zbl0512.12009MR655408
  55. 8 F. Diaz Y. Diaz, Valeurs minima du discriminant des corps de degré 7 ayant une seule place réelle, C.R. Acad. Sc. Paris296 (1983), 137-139. MR 84i:12004. Zbl0527.12007MR693185
  56. 9 F. Diaz Y. Diaz, Valeurs minima du discriminant pour certains types de corps de degré 7, Ann. Inst. Fourier (Grenoble) 34, no 3 (1984), 29-38. MR 86d:11091. Zbl0546.12004MR762692
  57. 10 K. Takeuchi, Totally real algebraic number fields of degree 5 and 6 with small discriminant, Saitama Math. J.2 (1984), 21-32. MR 86i:11060. Zbl0581.12002MR769447
  58. 11 H.J. Godwin, On quartic fields of signature one with small discriminant. II, Math. Comp.42 (1984). 707-711. Corrigendum, Math. Comp.43 (1984), 621. MR 85i:11092a, 11092b. Zbl0535.12003MR736462
  59. 12 F. Diaz Y. Diaz, Petits discriminants des corps de nombres totalement imaginaires de degré 8, J. Number Theory25 (1987), 34-52. Zbl0606.12005MR871167
  60. 13 S.-H. Kwon and J. Martinet, Sur les corps résolubles de degré premier, J. reine angew. Math.375/376 (1987), 12-23. MR 88g:11080. Zbl0601.12013MR882288
  61. 14 F. Diaz Y. Diaz, Discriminants minima et petits discriminants des corps de nombres de degré 7 avec cinq places réelles, J. London Math. Soc.38 (2) (1988), 33-46.. Zbl0653.12003MR949079
  62. 15 J. Buchmann and D. Ford, On the computation of totally real quartic fields of small discriminant, Math. Comp.52 (1989), 161-174. Zbl0668.12001MR946599
  63. 16 S.-H. Kwon, Sur les discriminants minimaux des corps quaternioniens. preprint 1987. 
  64. 17 P. Llorente and J. Quer, On totally real cubic fields with discriminant D &lt; 107, Math. Comp.50 (1988), 581-594. Zbl0651.12001MR929555
  65. 18 J. Buchmann, M. Pohst and J. v. Schmettow, On the computation of unit groups and class groups of totally real quartic fields, Math. Comp.53 (1989), 387-397. Zbl0714.11002MR970698
  66. 19 A.-M. Bergé, J. Martinet and M. Olivier, The computation of sextic fields with a quadratic subfield. in Math. Comp. to appear. Zbl0709.11056MR1011438
  67. 20 F. Diaz Y. Diaz, Table de corps quintiques totalement réels. Université de Paris-Sud, Département de Mathématiques, Orsay, Report no. 89-14, 35 pp., 1989. 
  68. 21 M. Pohst, J. Martinet and F. Diaz Y. Diaz, The minimum discriminant of totally real octic fields, J. Number Theory. to appear. Zbl0719.11079
  69. 1 J. Hoffstein, Some results related to minimal discriminants. pp. 185-194, Number Theory, Carbondale1979, Lecture Notes in Math. # 751, Springer1979, MR 81d:12005. Zbl0418.12002MR564928
  70. 2 A. Neugebauer, On zeros of zeta functions in low rectangles in the critical strip. (in Polish), Ph.D. Thesis, A. Mickiewicz University, Poznan, Poland, 1985. 
  71. 3 A. Neugebauer, On the zeros of the Dedekind zeta-function near the real axis, Funct. Approx. Comment. Math.16 (1988), 165-167. Zbl0677.12005MR965377
  72. 4 A. Neugebauer, Every Dedekind zeta-function has a zero in the rectangle 1/2 ≤ σ ≤ 1, 0 &lt; t &lt; 60,, Discuss. Math.. to appear. Zbl0592.12010
  73. 5 A.M. Odlyzko, Low zeros of Dedekind zeta function. manuscript in preparation. Zbl0615.10049
  74. 1 J.-F. Mestre, Formules explicites et minorations de conducteurs de variétés algébriques, Compositio Math.58 (1986), 209-232. MR 87j:11059. Zbl0607.14012MR844410
  75. 2 E. Friedman, The zero near 1 of an ideal class zeta function, J. London Math. Soc.35 (2) (1987). 1-17. MR 88g:11087. Zbl0583.12010MR871761
  76. 3 E. Friedman, Hecke's integral formula, Sém. Théorie des Nombres de Bordeaux (1987-88). Exp. #5, 23 pp., Univ. Bordeaux1988. Zbl0697.12010
  77. 1 E. Landau, Zur Theorie der Heckeschen Zetafunktionen, welche komplexen Charakteren entsprechen, Math. Zeit.4 (1919), 152-162.. Reprinted on pp. 176-186 of vol. 7, Edmund Landau: Collected Works, P.T. Bateman, et al., eds., Thales Verlag. Zbl47.0164.01MR1544358JFM47.0164.01
  78. 2 E. Landau, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, 2nd ed., Göttingen (1927). Reprinted by Chelsea, 1949. Zbl53.0141.09MR31002
  79. 3 R. Remak, Über die Abschätzung des absoluten Betrages des Regulators eines algebraischen Zahlkörpers nach unten, J. reine angew. Math.167. (1932), 360-378. Zbl0003.19801JFM58.0173.04
  80. 4 R.P. Boas and M. Kac, Inequalities for Fourier transforms of positive functions, Duke Math. J.12 (1945), 189-206. MR 6-265. Zbl0060.25602MR12152
  81. 5. A.P. Guinand, A summation formula in the theory of prime numbers, Proc. London Math. Soc.50 (2) (1948), 107-119. MR 10, 104g. Zbl0031.11003MR26086
  82. 6 A.P. Guinand, Fourier reciprocities and the Riemann zeta- function, Proc. London Math. Soc.51 (2) (1949), 401-414. MR 11, 162d. Zbl0039.11503MR31513
  83. 7 A. Weil, Sur les "formules explicites" de la théorie des nombres premiers, Comm. Sem. Math. Univ. Lund, tome supplémentaire (1952), 252-265. MR 14, 727e. Zbl0049.03205MR53152
  84. 8 R. Remak, Über Grössenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlkörpers, Compos. Math.10 (1952), 245-285. MR 14, 952d. Zbl0047.27202MR54641
  85. 9 R. Remak, Über algebraische Zahlkörper mit schwachem Einheitsdefekt, Compos. Math.12 (1954), 35-80. MR 16, 116a. Zbl0055.26805MR63403
  86. 10 A. Weil, Sur les formules explicites de la théorie des nombres, Izv. Akad. Nauk SSSR Ser. Mat.36 (1972). 3-18. MR 52 # 345. Reprinted in A. Weil, Oeuvres Scientifiques, vol. 3, pp. 249-264, Springer1979. Zbl0245.12010MR379440
  87. 11 H.-J. Besenfelder, Die Weilsche "Explizite Formel" und temperierte Distributionen, J. reine angew. Math.293/294 (1977), 228-257. MR 57 # 254. Zbl0354.12007MR460260
  88. 12 J.-P. Serre. note on p. 710 in vol. 3 of Jean-Pierre Serre, Collected Papers, Springer1986. 
  89. 13 H. Cohen and H.W. Lenstra Jr., Heuristics on class groups of number fields. pp. 33-62 in Number Theory, Noordwijkerhout1983, H. Jager ed., Lecture Notes in Math. # 1068, Springer1984. MR 85j:11144. Zbl0558.12002MR756082
  90. 14 J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C.R. Acad. Sci. Paris296 (1983). sér. I, 397-402. MR 85b:14027. Reprinted on pp. 658-663 in vol. 3 of Jean-Pierre Serre, Collected Papers, Springer1986. Zbl0538.14015MR703906
  91. 15 A.M. Odlyzko and H.J.J. te Riele, Disproof of the Mertens conjecture, J. reine angew. Math.357 (1985), 138-160. MR 86m:11070. Zbl0544.10047MR783538
  92. 16 J.-M. Fontaine, Il n'y a pas de variété abélienne sur Z, Invent. math.81 (1985), 515-538. MR 87g:11073. Zbl0612.14043MR807070
  93. 17 H. Cohen and J. Martinet, Etude heuristique des groupes de classes des corps de nombres, J. reine angew. Math.404 (1990), 39-76. Zbl0699.12016MR1037430
  94. 18 A. Borel and G. Prasad, Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Publ: Math. I.H.E.S.69 (1989), 119-171. Zbl0707.11032MR1019963

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.