A Garside presentation for Artin-Tits groups of type
F. Digne[1]
- [1] CNRS et Université de Picardie-Jules Verne LAMFA 33, Rue Saint-Leu 80039 Amiens Cedex (France)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 2, page 641-666
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDigne, F.. "A Garside presentation for Artin-Tits groups of type $\widetilde{C}_n$." Annales de l’institut Fourier 62.2 (2012): 641-666. <http://eudml.org/doc/251119>.
@article{Digne2012,
abstract = {We prove that an Artin-Tits group of type $\widetilde\{C\}$ is the group of fractions of a Garside monoid, analogous to the known dual monoids associated with Artin-Tits groups of spherical type and obtained by the “generated group” method. This answers, in this particular case, a general question on Artin-Tits groups, gives a new presentation of an Artin-Tits group of type $\widetilde\{C\}$, and has consequences for the word problem, the computation of some centralizers or the triviality of the center. A key point of the proof is to show that this group is a group of fixed points in an Artin-Tits group of type $\widetilde\{A\}$ under an involution. Another important point is the study of the Hurwitz action of the usual braid group on the decomposition of a Coxeter element into a product of reflections.},
affiliation = {CNRS et Université de Picardie-Jules Verne LAMFA 33, Rue Saint-Leu 80039 Amiens Cedex (France)},
author = {Digne, F.},
journal = {Annales de l’institut Fourier},
keywords = {Braids; Garside; Artin-Tits groups; affine Coxeter groups; Garside monoids; Artin monoids; dual monoids; normal form theorems; centralizers; Coxeter elements; groups of quotients; braid groups; presentations; products of reflections},
language = {eng},
number = {2},
pages = {641-666},
publisher = {Association des Annales de l’institut Fourier},
title = {A Garside presentation for Artin-Tits groups of type $\widetilde\{C\}_n$},
url = {http://eudml.org/doc/251119},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Digne, F.
TI - A Garside presentation for Artin-Tits groups of type $\widetilde{C}_n$
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 641
EP - 666
AB - We prove that an Artin-Tits group of type $\widetilde{C}$ is the group of fractions of a Garside monoid, analogous to the known dual monoids associated with Artin-Tits groups of spherical type and obtained by the “generated group” method. This answers, in this particular case, a general question on Artin-Tits groups, gives a new presentation of an Artin-Tits group of type $\widetilde{C}$, and has consequences for the word problem, the computation of some centralizers or the triviality of the center. A key point of the proof is to show that this group is a group of fixed points in an Artin-Tits group of type $\widetilde{A}$ under an involution. Another important point is the study of the Hurwitz action of the usual braid group on the decomposition of a Coxeter element into a product of reflections.
LA - eng
KW - Braids; Garside; Artin-Tits groups; affine Coxeter groups; Garside monoids; Artin monoids; dual monoids; normal form theorems; centralizers; Coxeter elements; groups of quotients; braid groups; presentations; products of reflections
UR - http://eudml.org/doc/251119
ER -
References
top- D. Bessis, Complex reflection arrangements are Zbl06446405
- D. Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. 36 (2003), 647-683 Zbl1064.20039MR2032983
- D. Bessis, A dual braid monoid for the free group, J. Algebra 302 (2006), 55-69 Zbl1181.20049MR2236594
- D. Bessis, F. Digne, J. Michel, Springer theory in braid groups and the Birman-Ko-Lee monoid, Pacific J. Math. 205 (2003), 287-309 Zbl1056.20023MR1922736
- J. Birman, H. Hilden, On isotopies of homeomorphisms of Riemann surfaces, Ann. of Math. 97 (1973), 424-439 Zbl0237.57001MR325959
- N. Bourbaki, Groupes et Algèbres de Lie, chapitres IV, V, VI, (1981), Masson, Paris Zbl0483.22001MR647314
- R. Charney, J. Crisp, Automorphism groups of some affine and finite type Artin groups, Math. Res. Lett. 12 (2005), 321-333 Zbl1077.20055MR2150887
- P. Dehornoy, Groupes de Garside, Ann. scient. Éc. Norm. Sup. série 35 (2002), 267-306 MR1914933
- P. Dehornoy, L. Paris, Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. London Math. Soc. 79 (1999), 569-604 Zbl1030.20021MR1710165
- F. Digne, Présentations duales pour les groupes de tresses de type affine , Comm. Math. Helvetici 8 (2008), 23-47 MR2208796
- F. Digne, J. Michel, Garside and locally Garside categories Zbl1294.18003
- M. J. Dyer, On minimal lengths of expressions of Coxeter group elements as product of reflections, Proc. Amer. Math. Soc. 129 (2001), 2591-2595 Zbl0980.20028MR1838781
- J.-Y. Hée, Système de racines sur un anneau commutatif totalement ordonné, Geom. Dedicata 37 (1991), 65-102 Zbl0721.17019MR1094228
- C. Maclachlan, W. Harvey, On mapping class groups and Teichmüller spaces, Proc. London Math. Soc. 30 (1975), 496-512 Zbl0303.32020MR374414
- J. Michel, A note on words in braid monoids, J. Algebra 215 (1999), 366-377 Zbl0937.20017MR1684142
- L. Paris, Artin monoids embed in their groups, Comment. Math. Helv. 77 (2002), 609-637 Zbl1020.20026MR1933791
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.