The dual braid monoid

David Bessis

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 5, page 647-683
  • ISSN: 0012-9593

How to cite

top

Bessis, David. "The dual braid monoid." Annales scientifiques de l'École Normale Supérieure 36.5 (2003): 647-683. <http://eudml.org/doc/82614>.

@article{Bessis2003,
author = {Bessis, David},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Artin groups; finite Coxeter systems; braid monoids; Garside monoids},
language = {eng},
number = {5},
pages = {647-683},
publisher = {Elsevier},
title = {The dual braid monoid},
url = {http://eudml.org/doc/82614},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Bessis, David
TI - The dual braid monoid
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 5
SP - 647
EP - 683
LA - eng
KW - Artin groups; finite Coxeter systems; braid monoids; Garside monoids
UR - http://eudml.org/doc/82614
ER -

References

top
  1. [1] Bessis D., Zariski theorems and diagrams for braid groups, Invent. Math.145 (2001) 487-507. Zbl1034.20033MR1856398
  2. [2] Bessis D., Digne F., Michel J., Springer theory in braid groups and the Birman–Ko–Lee monoid, Pacific J. Math.205 (2002) 287-310. Zbl1056.20023MR1922736
  3. [3] Birman J., Ko K.H., Lee S.J., A new approach to the word and conjugacy problem in the braid groups, Adv. Math.139 (2) (1998) 322-353. Zbl0937.20016MR1654165
  4. [4] Bourbaki N., Groupes et algèbres de Lie, Hermann, 1968, chapitres IV, V et VI. Zbl0483.22001MR240238
  5. [5] Brady T., A partial order on the symmetric group and new K(π,1)'s for the braid groups, Adv. Math.161 (2001) 20-40. Zbl1011.20040
  6. [6] Brady T., Watt C., A partial order on the orthogonal group, Comm. Algebra30 (2002) 3749-3754. Zbl1018.20040MR1922309
  7. [7] Brady T., Watt C., K(π,1)'s for Artin groups of finite type, Geom. Dedicata94 (2002) 225-250. Zbl1053.20034
  8. [8] Bremke K., Malle G., Reduced words and a length function for G(e,1,n), Indag. Math. (N.S.)8 (4) (1997) 453-469. Zbl0914.20036MR1621909
  9. [9] Brieskorn E., Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math.12 (1971) 57-61. Zbl0204.56502MR293615
  10. [10] Brieskorn E., Saito K., Artin-Gruppen und Coxeter-Gruppen, Invent. Math.17 (1972) 245-271. Zbl0243.20037MR323910
  11. [11] Broué M., Michel J., Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne–Lusztig associées, in: Proceedings de la Semaine de Luminy “Représentations des groupes réductifs finis, Birkhäuser, 1996, pp. 73-139. Zbl1029.20500
  12. [12] Broué M., Malle G., Rouquier R., Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math.500 (1998) 127-190. Zbl0921.20046MR1637497
  13. [13] Carter R.W., Conjugacy classes in the Weyl groups, Compositio Math.25 (1972) 1-52. Zbl0254.17005MR318337
  14. [14] Charney R., Meier J., Whittlesey K., Bestvina's normal form complex and the homology of Garside groups, preprint, 2001. Zbl1064.20044
  15. [15] Corran R., A normal form for a class of monoids including the singular braid monoids, J. Algebra223 (2000) 256-282. Zbl0971.20035MR1738262
  16. [16] Dehornoy P., Groupes de Garside, Ann. Sci. Éc. Norm. Sup. (4)35 (2002) 267-306. Zbl1017.20031MR1914933
  17. [17] Dehornoy P., Paris L., Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. London Math. Soc.79 (1999) 569-604. Zbl1030.20021MR1710165
  18. [18] Deligne P., Les immeubles des groupes de tresses généralisés, Invent. Math.17 (1972) 273-302. Zbl0238.20034MR422673
  19. [19] Deligne P., Action du groupe des tresses sur une catégorie, Invent. Math.128 (1997) 159-175. Zbl0879.57017MR1437497
  20. [20] Fomin S., Zelevinsky A., Y-systems and generalized associahedra, Ann. Math. (2003), submitted for publication. Zbl1057.52003MR2031858
  21. [21] Garside F.A., The braid group and other groups, Quart. J. Math. Oxford, 2 Ser.20 (1969) 235-254. Zbl0194.03303MR248801
  22. [22] Gilbert N.D., Howie J., LOG groups and cyclically presented groups, J. Algebra174 (1995) 118-131. Zbl0851.20025MR1332862
  23. [23] Han J.W., Ko K.H., Positive presentations of the braid groups and the embedding problem, Math. Z.240 (2002) 211-232. Zbl1078.20039MR1906714
  24. [24] Michel J., A note on words in braid monoids, J. Algebra215 (1999) 366-377. Zbl0937.20017MR1684142
  25. [25] Picantin M., Explicit presentations for the dual braid monoids, C. R. Math. Acad. Sci. Paris334 (10) (2002) 843-848. Zbl1020.20027MR1909925
  26. [26] Reiner V., Non-crossing partitions for classical reflection groups, Discrete Math.177 (1997) 195-222. Zbl0892.06001MR1483446
  27. [27] Schönert M. et al. , GAP – Groups, Algorithms and Programming, Lehrstuhl D für Mathematik, RWTH Aachen, Germany, 1994. Zbl0925.20009
  28. [28] Sergiescu V., Graphes planaires et présentations des groupes de tresses, Math. Z.214 (1993) 477-490. Zbl0819.20040MR1245207
  29. [29] Solomon L., Invariants of finite reflection groups, Nagoya Math. J.22 (1963) 57-64. Zbl0117.27104MR154929
  30. [30] Springer T.A., Regular elements of finite reflection groups, Invent. Math.25 (1974) 159-198. Zbl0287.20043MR354894

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.