Groupes de Garside

Patrick Dehornoy

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 2, page 267-306
  • ISSN: 0012-9593

How to cite

top

Dehornoy, Patrick. "Groupes de Garside." Annales scientifiques de l'École Normale Supérieure 35.2 (2002): 267-306. <http://eudml.org/doc/82571>.

@article{Dehornoy2002,
author = {Dehornoy, Patrick},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Garside monoids; Garside groups; positive braid monoids; biautomatic groups},
language = {fre},
number = {2},
pages = {267-306},
publisher = {Elsevier},
title = {Groupes de Garside},
url = {http://eudml.org/doc/82571},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Dehornoy, Patrick
TI - Groupes de Garside
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 2
SP - 267
EP - 306
LA - fre
KW - Garside monoids; Garside groups; positive braid monoids; biautomatic groups
UR - http://eudml.org/doc/82571
ER -

References

top
  1. [1] Adjan S.I., On the embeddability of semigroups, Soviet Math. Dokl.1 (4) (1960) 819-820. Zbl0114.25305MR124383
  2. [2] Adjan S.I., Fragments of the word Delta in a braid group, Mat. Zam. Acad. Sci. SSSR36 (1) (1984) 25-34, traduction: Math. Notes of the Acad. Sci. USSR36 (1) (1984) 505–510. Zbl0599.20044MR757642
  3. [3] Baumslag G., Miller III C.F. (Eds.), Algorithms and Classification in Combinatorial Group Theory, MSRI Publications, Vol. 23, Springer-Verlag, 1992. Zbl0742.00063MR1230626
  4. [4] Bessis D., Digne F., Michel J., Springer theory in braid groups and the Birman–Ko–Lee monoid, Prépublication, 2000. Zbl1056.20023
  5. [5] Brieskorn E., Saito K., Artin-Gruppen und Coxeter-Gruppen, Invent. Math.17 (1972) 245-271. Zbl0243.20037MR323910
  6. [6] Broué M., Malle G., Rouquier R., Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math.500 (1998) 127-190. Zbl0921.20046MR1637497
  7. [7] Burger M., Mozes S., Finitely presented simple groups and product of trees, C. R. Acad. Sci. Paris324 (1) (1997) 747-752. Zbl0966.20013MR1446574
  8. [8] Charney R., Artin groups of finite type are biautomatic, Math. Ann.292 (4) (1992) 671-683. Zbl0736.57001MR1157320
  9. [9] Charney R., Geodesic automation and growth functions for Artin groups of finite type, Math. Ann.301 (2) (1995) 307-324. Zbl0813.20042MR1314589
  10. [10] Clifford A.H., Preston G.B, The Algebraic Theory of Semigroups, Vol. 1, Amer. Math. Soc. Surveys, 7, 1961. Zbl0111.03403MR132791
  11. [11] Dehornoy P., Deux propriétés des groupes de tresses, C. R. Acad. Sci. Paris315 (1992) 633-638. Zbl0790.20056MR1183793
  12. [12] Dehornoy P., Braid groups and left distributive operations, Trans. Amer. Math. Soc.345 (1) (1994) 115-151. Zbl0837.20048MR1214782
  13. [13] Dehornoy P., Groups with a complemented presentation, J. Pure Appl. Algebra116 (1997) 115-137. Zbl0870.20023MR1437615
  14. [14] Dehornoy P., Gaussian groups are torsion free, J. Algebra210 (1998) 291-297. Zbl0959.20035MR1656425
  15. [15] Dehornoy P., On completeness of word reversing, Discrete Math.225 (2000) 93-119. Zbl0966.05038MR1798326
  16. [16] Dehornoy P., Braids and Self-Distributivity, Progress in Math., 192, Birkhäuser, 2000. Zbl0958.20033MR1778150
  17. [17] Dehornoy P., Paris L., Garside groups, a generalization of Artin groups, Proc. London Math. Soc.79 (3) (1999) 569-604. Zbl1030.20021MR1710165
  18. [18] Deligne P., Les immeubles des groupes de tresses généralisés, Invent. Math.17 (1972) 273-302. Zbl0238.20034MR422673
  19. [19] Elrifai E.A., Morton H.R., Algorithms for positive braids, Quart. J. Math. Oxford45 (2) (1994) 479-497. Zbl0839.20051MR1315459
  20. [20] Epstein D. et al. , Word Processing in Groups, Jones & Barlett, 1992. Zbl0764.20017
  21. [21] Garside F.A., The braid group and other groups, Quart. J. Math. Oxford20 (78) (1969) 235-254. Zbl0194.03303MR248801
  22. [22] Michel J., A note on words in braid monoids, J. Algebra215 (1999) 366-377. Zbl0937.20017MR1684142
  23. [23] Picantin M., The conjugacy problem in small Gaussian groups, Comm. Algebra29 (3) (2001) 1021-1038. Zbl0988.20024MR1842395
  24. [24] Picantin M., The center of thin Gaussian groups, J. Algebra245 (1) (2001) 92-122. Zbl1002.20022MR1868185
  25. [25] Remmers J.H., On the geometry of semigroup presentations, Adv. Math.36 (1980) 283-296. Zbl0438.20041MR577306
  26. [26] Tatsuoka K., An isoperimetric inequality for Artin groups of finite type, Trans. Amer. Math. Soc.339 (2) (1993) 537-551. Zbl0798.20030MR1137259
  27. [27] Thurston W., Finite state algorithms for the braid group, notes en circulation, 1988. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.