Groupes de Garside
Annales scientifiques de l'École Normale Supérieure (2002)
- Volume: 35, Issue: 2, page 267-306
- ISSN: 0012-9593
Access Full Article
topHow to cite
topReferences
top- [1] Adjan S.I., On the embeddability of semigroups, Soviet Math. Dokl.1 (4) (1960) 819-820. Zbl0114.25305MR124383
- [2] Adjan S.I., Fragments of the word Delta in a braid group, Mat. Zam. Acad. Sci. SSSR36 (1) (1984) 25-34, traduction: Math. Notes of the Acad. Sci. USSR36 (1) (1984) 505–510. Zbl0599.20044MR757642
- [3] Baumslag G., Miller III C.F. (Eds.), Algorithms and Classification in Combinatorial Group Theory, MSRI Publications, Vol. 23, Springer-Verlag, 1992. Zbl0742.00063MR1230626
- [4] Bessis D., Digne F., Michel J., Springer theory in braid groups and the Birman–Ko–Lee monoid, Prépublication, 2000. Zbl1056.20023
- [5] Brieskorn E., Saito K., Artin-Gruppen und Coxeter-Gruppen, Invent. Math.17 (1972) 245-271. Zbl0243.20037MR323910
- [6] Broué M., Malle G., Rouquier R., Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math.500 (1998) 127-190. Zbl0921.20046MR1637497
- [7] Burger M., Mozes S., Finitely presented simple groups and product of trees, C. R. Acad. Sci. Paris324 (1) (1997) 747-752. Zbl0966.20013MR1446574
- [8] Charney R., Artin groups of finite type are biautomatic, Math. Ann.292 (4) (1992) 671-683. Zbl0736.57001MR1157320
- [9] Charney R., Geodesic automation and growth functions for Artin groups of finite type, Math. Ann.301 (2) (1995) 307-324. Zbl0813.20042MR1314589
- [10] Clifford A.H., Preston G.B, The Algebraic Theory of Semigroups, Vol. 1, Amer. Math. Soc. Surveys, 7, 1961. Zbl0111.03403MR132791
- [11] Dehornoy P., Deux propriétés des groupes de tresses, C. R. Acad. Sci. Paris315 (1992) 633-638. Zbl0790.20056MR1183793
- [12] Dehornoy P., Braid groups and left distributive operations, Trans. Amer. Math. Soc.345 (1) (1994) 115-151. Zbl0837.20048MR1214782
- [13] Dehornoy P., Groups with a complemented presentation, J. Pure Appl. Algebra116 (1997) 115-137. Zbl0870.20023MR1437615
- [14] Dehornoy P., Gaussian groups are torsion free, J. Algebra210 (1998) 291-297. Zbl0959.20035MR1656425
- [15] Dehornoy P., On completeness of word reversing, Discrete Math.225 (2000) 93-119. Zbl0966.05038MR1798326
- [16] Dehornoy P., Braids and Self-Distributivity, Progress in Math., 192, Birkhäuser, 2000. Zbl0958.20033MR1778150
- [17] Dehornoy P., Paris L., Garside groups, a generalization of Artin groups, Proc. London Math. Soc.79 (3) (1999) 569-604. Zbl1030.20021MR1710165
- [18] Deligne P., Les immeubles des groupes de tresses généralisés, Invent. Math.17 (1972) 273-302. Zbl0238.20034MR422673
- [19] Elrifai E.A., Morton H.R., Algorithms for positive braids, Quart. J. Math. Oxford45 (2) (1994) 479-497. Zbl0839.20051MR1315459
- [20] Epstein D. et al. , Word Processing in Groups, Jones & Barlett, 1992. Zbl0764.20017
- [21] Garside F.A., The braid group and other groups, Quart. J. Math. Oxford20 (78) (1969) 235-254. Zbl0194.03303MR248801
- [22] Michel J., A note on words in braid monoids, J. Algebra215 (1999) 366-377. Zbl0937.20017MR1684142
- [23] Picantin M., The conjugacy problem in small Gaussian groups, Comm. Algebra29 (3) (2001) 1021-1038. Zbl0988.20024MR1842395
- [24] Picantin M., The center of thin Gaussian groups, J. Algebra245 (1) (2001) 92-122. Zbl1002.20022MR1868185
- [25] Remmers J.H., On the geometry of semigroup presentations, Adv. Math.36 (1980) 283-296. Zbl0438.20041MR577306
- [26] Tatsuoka K., An isoperimetric inequality for Artin groups of finite type, Trans. Amer. Math. Soc.339 (2) (1993) 537-551. Zbl0798.20030MR1137259
- [27] Thurston W., Finite state algorithms for the braid group, notes en circulation, 1988.