Effective equidistribution of S-integral points on symmetric varieties

Yves Benoist[1]; Hee Oh[2]

  • [1] Université d’Orsay, Mathématiques Bat. 425, 91405 Orsay France
  • [2] Brown University

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 5, page 1889-1942
  • ISSN: 0373-0956

Abstract

top
Let K be a global field of characteristic not 2. Let Z = H G be a symmetric variety defined over K and S a finite set of places of K . We obtain counting and equidistribution results for the S-integral points of Z . Our results are effective when K is a number field.

How to cite

top

Benoist, Yves, and Oh, Hee. "Effective equidistribution of S-integral points on symmetric varieties." Annales de l’institut Fourier 62.5 (2012): 1889-1942. <http://eudml.org/doc/251120>.

@article{Benoist2012,
abstract = {Let $K$ be a global field of characteristic not 2. Let $\bf \{Z\}=\bf \{H\}\backslash \bf \{G\}$ be a symmetric variety defined over $K$ and $S$ a finite set of places of $K$. We obtain counting and equidistribution results for the S-integral points of $\bf \{Z\}$. Our results are effective when $K$ is a number field.},
affiliation = {Université d’Orsay, Mathématiques Bat. 425, 91405 Orsay France; Brown University},
author = {Benoist, Yves, Oh, Hee},
journal = {Annales de l’institut Fourier},
keywords = {Counting; equidistribution; rational points; mixing; ; symmetric spaces; polar decomposition; resolution of singularities; counting},
language = {eng},
number = {5},
pages = {1889-1942},
publisher = {Association des Annales de l’institut Fourier},
title = {Effective equidistribution of S-integral points on symmetric varieties},
url = {http://eudml.org/doc/251120},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Benoist, Yves
AU - Oh, Hee
TI - Effective equidistribution of S-integral points on symmetric varieties
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 5
SP - 1889
EP - 1942
AB - Let $K$ be a global field of characteristic not 2. Let $\bf {Z}=\bf {H}\backslash \bf {G}$ be a symmetric variety defined over $K$ and $S$ a finite set of places of $K$. We obtain counting and equidistribution results for the S-integral points of $\bf {Z}$. Our results are effective when $K$ is a number field.
LA - eng
KW - Counting; equidistribution; rational points; mixing; ; symmetric spaces; polar decomposition; resolution of singularities; counting
UR - http://eudml.org/doc/251120
ER -

References

top
  1. M. Atiyah, Resolution of singularities and division of distributions, Comm. Pure Appl. Math. 23 (1970), 145-150 Zbl0188.19405MR256156
  2. F. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, 252 (1982), Springer Zbl0512.53044MR681859
  3. Y. Benoist, Five lectures on lattices, 18 (2010) Zbl1252.22006
  4. Y. Benoist, H. Oh, Polar decomposition for p -adic symmetric spaces, Int. Math. Res. Not. 24 (2007) Zbl1137.22008MR2377008
  5. F. Bruhat, J. Tits, Groupes réductifs sur un corps local I, Publ. IHES 41 (1972), 5-252 Zbl0254.14017MR327923
  6. F. Bruhat, J. Tits, Groupes réductifs sur un corps local II, Publ. IHES 60 (1984), 5-184 Zbl0254.14017MR327923
  7. A. Chambert-Loir, Yu. Tschinkel, On the distribution of points of bounded height on equivariant compactification of vector groups, Invent. Math. 48 (2002), 421-452 Zbl1067.11036MR1906155
  8. L. Clozel, Démonstration de la conjecture τ , Invent. Math. 151 (2003), 297-328 Zbl1025.11012MR1953260
  9. L. Clozel, H. Oh, E. Ullmo, Hecke operators and equidistribution of Hecke points, Inv. Math. 144 (2003), 327-351 Zbl1144.11301MR1827734
  10. R. Cluckers, Classification of semialgebraic p -adic sets up to semi-algebraic bijection, Jour. Reine Angw. Math. 540 (2001), 105-114 Zbl0984.14018MR1868600
  11. S. Dani, G. Margulis, Asymptotic behavior of trajectories of unipotent flows on homogeneous spaces, Proc. Indian. Acad. Sci. 101 (1991), 1-17 Zbl0731.22008MR1101994
  12. S. Dani, G. Margulis, Limit distribution of orbits of unipotent flows and values of quadratic forms, Advances in Soviet Math. 16 (1993), 91-137 Zbl0814.22003MR1237827
  13. P. Delorme, V. Sécherre, An analogue of the Cartan decomposition for p-adic reductive symmetric spaces, Pacific J. Math. 251 (2011), 1-21 Zbl1220.22003MR2794612
  14. J. Denef, On the evaluation of certain p -adic integral, Progress in Math. 59 (1985), 25-47 Zbl0597.12021MR902824
  15. J. Denef, p -adic semialgebraic sets and cell decomposition, Jour. Reine Angw. Math. 369 (1986), 154-166 Zbl0584.12015MR850632
  16. W. Duke, Hyperbolic distribution problems and half integral weight Maass forms, Inven. Math. 92 (1988), 73-90 Zbl0628.10029MR931205
  17. W. Duke, Z. Rudnick, P. Sarnak, Density of integer points on affine homogeneous varieties, Duke Math. Journ. 71 (1993), 143-179 Zbl0798.11024MR1230289
  18. M. Einsiedler, E. Lindenstrauss, Diagonalizable flows on locally homogeneous spaces and number theory, Int. Cong. Math. (2006), 1731-1759 Zbl1121.37028MR2275667
  19. M. Einsiedler, G. Margulis, A. Venkatesh, Effective equidistribution of closed orbits of semisimple groups on homogeneous spaces, Invent. Math. 177 (2009), 137-212 Zbl1176.37003MR2507639
  20. M. Einsiedler, A. Venkatesh, Local-Global principles for representations of quadratic forms, Inv. Math. 171 (2008), 257-279 Zbl1247.11048MR2367020
  21. A. Eskin, C. McMullen, Mixing, counting and equidistribution in Lie groups, Duke Math. Journ. 71 (1993), 181-209 Zbl0798.11025MR1230290
  22. A. Eskin, S. Mozes, N. Shah, Unipotent flows and counting lattice points on homogeneous varieties, Annals of Math. 143 (1996), 149-159 Zbl0852.11054MR1381987
  23. A. Eskin, H. Oh, Representations of integers by an invariant polynomial and unipotent flows, Duke Math. Journ. 135 (2006), 481-506 Zbl1138.11011MR2272974
  24. R. Godement, Domaines fondamentaux des groupes arithmétiques, 257 (1963) Zbl0136.30101MR191899
  25. A. Gorodnik, F. Maucourant, H. Oh, Manin’s and Peyre’s conjectures on rational points and adelic mixing, Ann. Sci. Ecole Norm. Sup. 41 (2008), 47-97 Zbl1161.14015MR2482443
  26. A. Gorodnik, A. Nevo, The ergodic theory of lattice subgroups, 172 (2009) Zbl1186.37004MR2573139
  27. A. Gorodnik, H. Oh, Rational points on homogeneous varieties and Equidistribution for Adelic periods, GAFA 21 (2011), 319-392 Zbl1317.11069MR2795511
  28. A. Gorodnik, H. Oh, N. Shah, Integral points on symmetric varieties and Satake compactifications, Amer. J. Math. 131 (2009), 1-57 Zbl1231.14041MR2488484
  29. A. Gorodnik, B. Weiss, Distribution of lattice orbits on homogeneous varieties, GAFA 17 (2007), 58-115 Zbl1112.37001MR2306653
  30. A. Guilloux, Existence et équidistribution des matrices de dénominateur n dans les groupes unitaires et orthogonaux, Ann. Inst. Fourier 58 (2008), 1185-1212 Zbl1149.11017MR2427958
  31. A. Helminck, S. Wang, On rationality properties of involutions of reductive groups, Adv. in Math. 99 (1993), 26-97 Zbl0788.22022MR1215304
  32. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326 Zbl0122.38603MR199184
  33. H. Iwaniec, Fourier coefficients of modular forms of half integral weight, Inv. Math. 87 (1987), 385-401 Zbl0606.10017MR870736
  34. P. Jeanquartier, Integration sur les fibres d’une fonction analytique, 34 (1999), 1-39 
  35. F. Ledrappier, Distribution des orbites des réseaux sur le plan réel, CRAS 329 (1999), 61-54 Zbl0928.22012MR1703338
  36. (Y. V.) Linnik, Additive problems and eigenvalues of the modular operators, (1962), 270-284 Zbl0116.03604
  37. A. Macintyre, On definable subsets of p -adic fields, J. Symb. Logic 41 (1976), 605-610 Zbl0362.02046MR485335
  38. G. Margulis, Discrete subgroups of semisimple Lie groups, (1991), Springer Ergebnisse Zbl0732.22008MR1090825
  39. G. Margulis, On some aspects of the theory of Anosov systems, (2004), Springer Zbl1140.37010MR2035655
  40. F. Maucourant, Homogeneous asymptotic limits of Haar measures of semisimple linear groups, Duke Math. Jour. 136 (2007), 357-399 Zbl1117.22006MR2286635
  41. P. Michel, A. Venkatesh, Equidistribution, L -functions and ergodic theory: on some problems of Yu. Linnik, (2006), Proc. Int. Cong. Math. Zbl1157.11019MR2275604
  42. S. Mozes, N. Shah, On the space of ergodic invariant measures of unipotent flows, ETDS 15 (1995), 149-159 Zbl0818.58028MR1314973
  43. H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J. 113 (2002), 133-192 Zbl1011.22007MR1905394
  44. H. Oh, Hardy-Littlewood system and representations of integers by invariant polynomials, GAFA 14 (2004), 791-809 Zbl1196.11057MR2084980
  45. V. Platonov, A. Rapinchuk, Algebraic groups and number theory, (1994), Ac. Press Zbl0841.20046MR1278263
  46. G. Prasad, Strong approximation for semisimple groups over function fields, Annals of Math. 105 (1977), 553-572 Zbl0348.22006MR444571
  47. M. Ratner, On Raghunathan’s measure conjecture, Annals of Math. 134 (1991), 545-607 Zbl0763.28012MR1135878
  48. P. Sarnak, Diophantine problems and linear groups, Proc. Int. Cong. Math. (1990), 459-471 Zbl0743.11018MR1159234
  49. N. Shah, Limit distribution of expanding translates of certain orbits on homogeneous spaces on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci. 106 (1996), 105-125 Zbl0864.22004MR1403756

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.