Effective equidistribution of S-integral points on symmetric varieties
Yves Benoist[1]; Hee Oh[2]
- [1] Université d’Orsay, Mathématiques Bat. 425, 91405 Orsay France
- [2] Brown University
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 5, page 1889-1942
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBenoist, Yves, and Oh, Hee. "Effective equidistribution of S-integral points on symmetric varieties." Annales de l’institut Fourier 62.5 (2012): 1889-1942. <http://eudml.org/doc/251120>.
@article{Benoist2012,
abstract = {Let $K$ be a global field of characteristic not 2. Let $\bf \{Z\}=\bf \{H\}\backslash \bf \{G\}$ be a symmetric variety defined over $K$ and $S$ a finite set of places of $K$. We obtain counting and equidistribution results for the S-integral points of $\bf \{Z\}$. Our results are effective when $K$ is a number field.},
affiliation = {Université d’Orsay, Mathématiques Bat. 425, 91405 Orsay France; Brown University},
author = {Benoist, Yves, Oh, Hee},
journal = {Annales de l’institut Fourier},
keywords = {Counting; equidistribution; rational points; mixing; ; symmetric spaces; polar decomposition; resolution of singularities; counting},
language = {eng},
number = {5},
pages = {1889-1942},
publisher = {Association des Annales de l’institut Fourier},
title = {Effective equidistribution of S-integral points on symmetric varieties},
url = {http://eudml.org/doc/251120},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Benoist, Yves
AU - Oh, Hee
TI - Effective equidistribution of S-integral points on symmetric varieties
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 5
SP - 1889
EP - 1942
AB - Let $K$ be a global field of characteristic not 2. Let $\bf {Z}=\bf {H}\backslash \bf {G}$ be a symmetric variety defined over $K$ and $S$ a finite set of places of $K$. We obtain counting and equidistribution results for the S-integral points of $\bf {Z}$. Our results are effective when $K$ is a number field.
LA - eng
KW - Counting; equidistribution; rational points; mixing; ; symmetric spaces; polar decomposition; resolution of singularities; counting
UR - http://eudml.org/doc/251120
ER -
References
top- M. Atiyah, Resolution of singularities and division of distributions, Comm. Pure Appl. Math. 23 (1970), 145-150 Zbl0188.19405MR256156
- F. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, 252 (1982), Springer Zbl0512.53044MR681859
- Y. Benoist, Five lectures on lattices, 18 (2010) Zbl1252.22006
- Y. Benoist, H. Oh, Polar decomposition for -adic symmetric spaces, Int. Math. Res. Not. 24 (2007) Zbl1137.22008MR2377008
- F. Bruhat, J. Tits, Groupes réductifs sur un corps local I, Publ. IHES 41 (1972), 5-252 Zbl0254.14017MR327923
- F. Bruhat, J. Tits, Groupes réductifs sur un corps local II, Publ. IHES 60 (1984), 5-184 Zbl0254.14017MR327923
- A. Chambert-Loir, Yu. Tschinkel, On the distribution of points of bounded height on equivariant compactification of vector groups, Invent. Math. 48 (2002), 421-452 Zbl1067.11036MR1906155
- L. Clozel, Démonstration de la conjecture , Invent. Math. 151 (2003), 297-328 Zbl1025.11012MR1953260
- L. Clozel, H. Oh, E. Ullmo, Hecke operators and equidistribution of Hecke points, Inv. Math. 144 (2003), 327-351 Zbl1144.11301MR1827734
- R. Cluckers, Classification of semialgebraic -adic sets up to semi-algebraic bijection, Jour. Reine Angw. Math. 540 (2001), 105-114 Zbl0984.14018MR1868600
- S. Dani, G. Margulis, Asymptotic behavior of trajectories of unipotent flows on homogeneous spaces, Proc. Indian. Acad. Sci. 101 (1991), 1-17 Zbl0731.22008MR1101994
- S. Dani, G. Margulis, Limit distribution of orbits of unipotent flows and values of quadratic forms, Advances in Soviet Math. 16 (1993), 91-137 Zbl0814.22003MR1237827
- P. Delorme, V. Sécherre, An analogue of the Cartan decomposition for p-adic reductive symmetric spaces, Pacific J. Math. 251 (2011), 1-21 Zbl1220.22003MR2794612
- J. Denef, On the evaluation of certain -adic integral, Progress in Math. 59 (1985), 25-47 Zbl0597.12021MR902824
- J. Denef, -adic semialgebraic sets and cell decomposition, Jour. Reine Angw. Math. 369 (1986), 154-166 Zbl0584.12015MR850632
- W. Duke, Hyperbolic distribution problems and half integral weight Maass forms, Inven. Math. 92 (1988), 73-90 Zbl0628.10029MR931205
- W. Duke, Z. Rudnick, P. Sarnak, Density of integer points on affine homogeneous varieties, Duke Math. Journ. 71 (1993), 143-179 Zbl0798.11024MR1230289
- M. Einsiedler, E. Lindenstrauss, Diagonalizable flows on locally homogeneous spaces and number theory, Int. Cong. Math. (2006), 1731-1759 Zbl1121.37028MR2275667
- M. Einsiedler, G. Margulis, A. Venkatesh, Effective equidistribution of closed orbits of semisimple groups on homogeneous spaces, Invent. Math. 177 (2009), 137-212 Zbl1176.37003MR2507639
- M. Einsiedler, A. Venkatesh, Local-Global principles for representations of quadratic forms, Inv. Math. 171 (2008), 257-279 Zbl1247.11048MR2367020
- A. Eskin, C. McMullen, Mixing, counting and equidistribution in Lie groups, Duke Math. Journ. 71 (1993), 181-209 Zbl0798.11025MR1230290
- A. Eskin, S. Mozes, N. Shah, Unipotent flows and counting lattice points on homogeneous varieties, Annals of Math. 143 (1996), 149-159 Zbl0852.11054MR1381987
- A. Eskin, H. Oh, Representations of integers by an invariant polynomial and unipotent flows, Duke Math. Journ. 135 (2006), 481-506 Zbl1138.11011MR2272974
- R. Godement, Domaines fondamentaux des groupes arithmétiques, 257 (1963) Zbl0136.30101MR191899
- A. Gorodnik, F. Maucourant, H. Oh, Manin’s and Peyre’s conjectures on rational points and adelic mixing, Ann. Sci. Ecole Norm. Sup. 41 (2008), 47-97 Zbl1161.14015MR2482443
- A. Gorodnik, A. Nevo, The ergodic theory of lattice subgroups, 172 (2009) Zbl1186.37004MR2573139
- A. Gorodnik, H. Oh, Rational points on homogeneous varieties and Equidistribution for Adelic periods, GAFA 21 (2011), 319-392 Zbl1317.11069MR2795511
- A. Gorodnik, H. Oh, N. Shah, Integral points on symmetric varieties and Satake compactifications, Amer. J. Math. 131 (2009), 1-57 Zbl1231.14041MR2488484
- A. Gorodnik, B. Weiss, Distribution of lattice orbits on homogeneous varieties, GAFA 17 (2007), 58-115 Zbl1112.37001MR2306653
- A. Guilloux, Existence et équidistribution des matrices de dénominateur n dans les groupes unitaires et orthogonaux, Ann. Inst. Fourier 58 (2008), 1185-1212 Zbl1149.11017MR2427958
- A. Helminck, S. Wang, On rationality properties of involutions of reductive groups, Adv. in Math. 99 (1993), 26-97 Zbl0788.22022MR1215304
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326 Zbl0122.38603MR199184
- H. Iwaniec, Fourier coefficients of modular forms of half integral weight, Inv. Math. 87 (1987), 385-401 Zbl0606.10017MR870736
- P. Jeanquartier, Integration sur les fibres d’une fonction analytique, 34 (1999), 1-39
- F. Ledrappier, Distribution des orbites des réseaux sur le plan réel, CRAS 329 (1999), 61-54 Zbl0928.22012MR1703338
- (Y. V.) Linnik, Additive problems and eigenvalues of the modular operators, (1962), 270-284 Zbl0116.03604
- A. Macintyre, On definable subsets of -adic fields, J. Symb. Logic 41 (1976), 605-610 Zbl0362.02046MR485335
- G. Margulis, Discrete subgroups of semisimple Lie groups, (1991), Springer Ergebnisse Zbl0732.22008MR1090825
- G. Margulis, On some aspects of the theory of Anosov systems, (2004), Springer Zbl1140.37010MR2035655
- F. Maucourant, Homogeneous asymptotic limits of Haar measures of semisimple linear groups, Duke Math. Jour. 136 (2007), 357-399 Zbl1117.22006MR2286635
- P. Michel, A. Venkatesh, Equidistribution, -functions and ergodic theory: on some problems of Yu. Linnik, (2006), Proc. Int. Cong. Math. Zbl1157.11019MR2275604
- S. Mozes, N. Shah, On the space of ergodic invariant measures of unipotent flows, ETDS 15 (1995), 149-159 Zbl0818.58028MR1314973
- H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J. 113 (2002), 133-192 Zbl1011.22007MR1905394
- H. Oh, Hardy-Littlewood system and representations of integers by invariant polynomials, GAFA 14 (2004), 791-809 Zbl1196.11057MR2084980
- V. Platonov, A. Rapinchuk, Algebraic groups and number theory, (1994), Ac. Press Zbl0841.20046MR1278263
- G. Prasad, Strong approximation for semisimple groups over function fields, Annals of Math. 105 (1977), 553-572 Zbl0348.22006MR444571
- M. Ratner, On Raghunathan’s measure conjecture, Annals of Math. 134 (1991), 545-607 Zbl0763.28012MR1135878
- P. Sarnak, Diophantine problems and linear groups, Proc. Int. Cong. Math. (1990), 459-471 Zbl0743.11018MR1159234
- N. Shah, Limit distribution of expanding translates of certain orbits on homogeneous spaces on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci. 106 (1996), 105-125 Zbl0864.22004MR1403756
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.