Three-manifolds and Kähler groups

D. Kotschick[1]

  • [1] Mathematisches Institut, LMU München, Theresienstr. 39, 80333 München, Germany

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 3, page 1081-1090
  • ISSN: 0373-0956

Abstract

top
We give a simple proof of a result originally due to Dimca and Suciu: a group that is both Kähler and the fundamental group of a closed three-manifold is finite. We also prove that a group that is both the fundamental group of a closed three-manifold and of a non-Kähler compact complex surface is or 2 .

How to cite

top

Kotschick, D.. "Three-manifolds and Kähler groups." Annales de l’institut Fourier 62.3 (2012): 1081-1090. <http://eudml.org/doc/251121>.

@article{Kotschick2012,
abstract = {We give a simple proof of a result originally due to Dimca and Suciu: a group that is both Kähler and the fundamental group of a closed three-manifold is finite. We also prove that a group that is both the fundamental group of a closed three-manifold and of a non-Kähler compact complex surface is $\mathbb\{ Z\}$ or $\mathbb\{ Z\}\oplus \mathbb\{ Z\}_2$.},
affiliation = {Mathematisches Institut, LMU München, Theresienstr. 39, 80333 München, Germany},
author = {Kotschick, D.},
journal = {Annales de l’institut Fourier},
keywords = {three-manifold groups; Kähler groups},
language = {eng},
number = {3},
pages = {1081-1090},
publisher = {Association des Annales de l’institut Fourier},
title = {Three-manifolds and Kähler groups},
url = {http://eudml.org/doc/251121},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Kotschick, D.
TI - Three-manifolds and Kähler groups
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 3
SP - 1081
EP - 1090
AB - We give a simple proof of a result originally due to Dimca and Suciu: a group that is both Kähler and the fundamental group of a closed three-manifold is finite. We also prove that a group that is both the fundamental group of a closed three-manifold and of a non-Kähler compact complex surface is $\mathbb{ Z}$ or $\mathbb{ Z}\oplus \mathbb{ Z}_2$.
LA - eng
KW - three-manifold groups; Kähler groups
UR - http://eudml.org/doc/251121
ER -

References

top
  1. J. Amorós, On the Malcev completion of Kähler groups, Comment. Math. Helv. 71 (1996), 192-212 Zbl0867.57002MR1396672
  2. J. Amorós, M. Burger, K. Corlette, D. Kotschick, D. Toledo, Fundamental Groups of Compact Kähler Manifolds, 44 (1996), Amer. Math. Soc., Providence, R.I. Zbl0849.32006MR1379330
  3. W. Barth, C. Peters, A. Van de Ven, Compact Complex Surfaces, (1984), Springer-Verlag, Berlin Zbl0718.14023MR749574
  4. N. Buchdahl, On compact Kähler surfaces, Ann. Inst. Fourier 49 (1999), 287-302 Zbl0926.32025MR1688136
  5. J. A. Carlson, D. Toledo, Harmonic mapping of Kähler manifolds to locally symmetric spaces, Publ. Math. I.H.E.S. 69 (1989), 173-201 Zbl0695.58010MR1019964
  6. A. Dimca, A. I. Suciu, Which 3 -manifold groups are Kähler groups?, J. Eur. Math. Soc. 11 (2009), 521-528 Zbl1217.57011MR2505439
  7. M. Gromov, Sur le groupe fondamental d’une variété kählérienne, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), 67-70 Zbl0661.53049MR983460
  8. J. Hempel, Virtually Haken manifolds, Combinatorial methods in topology and algebraic geometry 44 (1985), 149-155, Providence, RI, Rochester, N.Y., 1982 Zbl0597.57006MR813110
  9. J. Hempel, Residual finiteness for 3-manifolds, Combinatorial group theory and topology, ed. S. M. Gersten and J. R. Stallings, Ann. Math. Stud. vol. 111, Princeton Univ. Press (1987) Zbl0772.57002MR895623
  10. L. Hernández-Lamoneda, Non-positively curved 3 -manifolds with non-Kähler  π 1 , C. R. Acad. Sci. Paris Sér. I 332 (2001), 249-252 Zbl0992.53028MR1817371
  11. F. E. A. Johnson, E. G. Rees, On the fundamental group of a complex algebraic manifold, Bull. London Math. Soc. 19 (1987), 463-466 Zbl0608.53061MR898726
  12. R. Kirby, Problems in Low-Dimensional Topology, Geometric Topology 2 part 2 (1997), American Mathematical Society and International Press Zbl0882.00042MR1470751
  13. B. Kleiner, J. Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008), 2587-2855 Zbl1204.53033MR2460872
  14. B. Klingler, Kähler groups and duality, Preprint arXiv:1005.2836v1 [math.GR] (17 May 2010) 
  15. S. Kojima, Finite covers of 3 -manifolds containing essential surfaces of Euler characteristic = 0 , Proc. Amer. Math. Soc. 101 (1987), 743-747 Zbl0644.57002MR911044
  16. J. Kollár, Shafarevich maps and automorphic forms, (1995), Princeton Univ. Press, Princeton, NJ Zbl0871.14015MR1341589
  17. L. Luecke, Finite covers of 3 -manifolds containing essential tori, Trans. Amer. Math. Soc. 310 (1988), 381-391 Zbl0706.57009MR965759
  18. J. W. Milnor, A unique decomposition theorem for 3 -manifolds, Amer. J. Math. 84 (1962), 1-7 Zbl0108.36501MR142125
  19. J. W. Morgan, G. Tian, Ricci flow and the Poincaré conjecture, (2007), Amer. Math. Soc. and Clay Math. Institute Zbl1179.57045MR2334563
  20. I. Nakamura, Towards classification of non-Kählerian complex surfaces, Sugaku Exp. 2 (1989), 209-229 Zbl0685.14020MR780359
  21. G. Perelman, Ricci flow with surgery on three-manifolds, Preprint arXiv:math/0303109v1 [math.DG] (10 Mar 2003) Zbl1130.53002
  22. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Preprint arXiv:math/0211159v1 [math.DG] (11 Nov 2002) Zbl1130.53001
  23. P. Scott, The geometries of 3 -manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
  24. C. H. Taubes, The existence of anti-self-dual conformal structures, J. Differential Geometry 36 (1992), 163-253 Zbl0822.53006MR1168984
  25. D. Toledo, Examples of fundamental groups of compact Kähler manifolds, Bull. London Math. Soc. 22 (1990), 339-343 Zbl0711.57024MR1058308

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.