Three-manifolds and Kähler groups
D. Kotschick[1]
- [1] Mathematisches Institut, LMU München, Theresienstr. 39, 80333 München, Germany
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 3, page 1081-1090
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKotschick, D.. "Three-manifolds and Kähler groups." Annales de l’institut Fourier 62.3 (2012): 1081-1090. <http://eudml.org/doc/251121>.
@article{Kotschick2012,
abstract = {We give a simple proof of a result originally due to Dimca and Suciu: a group that is both Kähler and the fundamental group of a closed three-manifold is finite. We also prove that a group that is both the fundamental group of a closed three-manifold and of a non-Kähler compact complex surface is $\mathbb\{ Z\}$ or $\mathbb\{ Z\}\oplus \mathbb\{ Z\}_2$.},
affiliation = {Mathematisches Institut, LMU München, Theresienstr. 39, 80333 München, Germany},
author = {Kotschick, D.},
journal = {Annales de l’institut Fourier},
keywords = {three-manifold groups; Kähler groups},
language = {eng},
number = {3},
pages = {1081-1090},
publisher = {Association des Annales de l’institut Fourier},
title = {Three-manifolds and Kähler groups},
url = {http://eudml.org/doc/251121},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Kotschick, D.
TI - Three-manifolds and Kähler groups
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 3
SP - 1081
EP - 1090
AB - We give a simple proof of a result originally due to Dimca and Suciu: a group that is both Kähler and the fundamental group of a closed three-manifold is finite. We also prove that a group that is both the fundamental group of a closed three-manifold and of a non-Kähler compact complex surface is $\mathbb{ Z}$ or $\mathbb{ Z}\oplus \mathbb{ Z}_2$.
LA - eng
KW - three-manifold groups; Kähler groups
UR - http://eudml.org/doc/251121
ER -
References
top- J. Amorós, On the Malcev completion of Kähler groups, Comment. Math. Helv. 71 (1996), 192-212 Zbl0867.57002MR1396672
- J. Amorós, M. Burger, K. Corlette, D. Kotschick, D. Toledo, Fundamental Groups of Compact Kähler Manifolds, 44 (1996), Amer. Math. Soc., Providence, R.I. Zbl0849.32006MR1379330
- W. Barth, C. Peters, A. Van de Ven, Compact Complex Surfaces, (1984), Springer-Verlag, Berlin Zbl0718.14023MR749574
- N. Buchdahl, On compact Kähler surfaces, Ann. Inst. Fourier 49 (1999), 287-302 Zbl0926.32025MR1688136
- J. A. Carlson, D. Toledo, Harmonic mapping of Kähler manifolds to locally symmetric spaces, Publ. Math. I.H.E.S. 69 (1989), 173-201 Zbl0695.58010MR1019964
- A. Dimca, A. I. Suciu, Which -manifold groups are Kähler groups?, J. Eur. Math. Soc. 11 (2009), 521-528 Zbl1217.57011MR2505439
- M. Gromov, Sur le groupe fondamental d’une variété kählérienne, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), 67-70 Zbl0661.53049MR983460
- J. Hempel, Virtually Haken manifolds, Combinatorial methods in topology and algebraic geometry 44 (1985), 149-155, Providence, RI, Rochester, N.Y., 1982 Zbl0597.57006MR813110
- J. Hempel, Residual finiteness for 3-manifolds, Combinatorial group theory and topology, ed. S. M. Gersten and J. R. Stallings, Ann. Math. Stud. vol. 111, Princeton Univ. Press (1987) Zbl0772.57002MR895623
- L. Hernández-Lamoneda, Non-positively curved -manifolds with non-Kähler , C. R. Acad. Sci. Paris Sér. I 332 (2001), 249-252 Zbl0992.53028MR1817371
- F. E. A. Johnson, E. G. Rees, On the fundamental group of a complex algebraic manifold, Bull. London Math. Soc. 19 (1987), 463-466 Zbl0608.53061MR898726
- R. Kirby, Problems in Low-Dimensional Topology, Geometric Topology 2 part 2 (1997), American Mathematical Society and International Press Zbl0882.00042MR1470751
- B. Kleiner, J. Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008), 2587-2855 Zbl1204.53033MR2460872
- B. Klingler, Kähler groups and duality, Preprint arXiv:1005.2836v1 [math.GR] (17 May 2010)
- S. Kojima, Finite covers of -manifolds containing essential surfaces of Euler characteristic , Proc. Amer. Math. Soc. 101 (1987), 743-747 Zbl0644.57002MR911044
- J. Kollár, Shafarevich maps and automorphic forms, (1995), Princeton Univ. Press, Princeton, NJ Zbl0871.14015MR1341589
- L. Luecke, Finite covers of -manifolds containing essential tori, Trans. Amer. Math. Soc. 310 (1988), 381-391 Zbl0706.57009MR965759
- J. W. Milnor, A unique decomposition theorem for -manifolds, Amer. J. Math. 84 (1962), 1-7 Zbl0108.36501MR142125
- J. W. Morgan, G. Tian, Ricci flow and the Poincaré conjecture, (2007), Amer. Math. Soc. and Clay Math. Institute Zbl1179.57045MR2334563
- I. Nakamura, Towards classification of non-Kählerian complex surfaces, Sugaku Exp. 2 (1989), 209-229 Zbl0685.14020MR780359
- G. Perelman, Ricci flow with surgery on three-manifolds, Preprint arXiv:math/0303109v1 [math.DG] (10 Mar 2003) Zbl1130.53002
- G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Preprint arXiv:math/0211159v1 [math.DG] (11 Nov 2002) Zbl1130.53001
- P. Scott, The geometries of -manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
- C. H. Taubes, The existence of anti-self-dual conformal structures, J. Differential Geometry 36 (1992), 163-253 Zbl0822.53006MR1168984
- D. Toledo, Examples of fundamental groups of compact Kähler manifolds, Bull. London Math. Soc. 22 (1990), 339-343 Zbl0711.57024MR1058308
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.