On compact Kähler surfaces

Nicholas Buchdahl

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 1, page 287-302
  • ISSN: 0373-0956

Abstract

top
Without relying on the classification of compact complex surfaces, it is proved that every such surface with even first Betti number admits a Kähler metric and that a real form of the classical Nakai-Moishezon criterion holds on the surface.

How to cite

top

Buchdahl, Nicholas. "On compact Kähler surfaces." Annales de l'institut Fourier 49.1 (1999): 287-302. <http://eudml.org/doc/75337>.

@article{Buchdahl1999,
abstract = {Without relying on the classification of compact complex surfaces, it is proved that every such surface with even first Betti number admits a Kähler metric and that a real form of the classical Nakai-Moishezon criterion holds on the surface.},
author = {Buchdahl, Nicholas},
journal = {Annales de l'institut Fourier},
keywords = {compact complex surfaces; Kähler metric; Nakai criterion; positive current},
language = {eng},
number = {1},
pages = {287-302},
publisher = {Association des Annales de l'Institut Fourier},
title = {On compact Kähler surfaces},
url = {http://eudml.org/doc/75337},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Buchdahl, Nicholas
TI - On compact Kähler surfaces
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 1
SP - 287
EP - 302
AB - Without relying on the classification of compact complex surfaces, it is proved that every such surface with even first Betti number admits a Kähler metric and that a real form of the classical Nakai-Moishezon criterion holds on the surface.
LA - eng
KW - compact complex surfaces; Kähler metric; Nakai criterion; positive current
UR - http://eudml.org/doc/75337
ER -

References

top
  1. [BPV] W. BARTH, C. PETERS and A. VAN de VEN, Compact Complex Surfaces, Berlin-Heidelberg-New York, Springer, 1984. Zbl0718.14023MR86c:32026
  2. [CP] F. CAMPANA and T. PETERNELL, Algebraicity of the ample cone of projective varieties, J. reine angew. Math., 407 (1990), 160-166. Zbl0728.14004MR91c:14012
  3. [D1] J.-P. DEMAILLY, Regularization of closed positive currents and intersection theory, J. Alg. Geom., 1 (1992), 361-409. Zbl0777.32016MR93e:32015
  4. [D2] J.-P. DEMAILLY, Regularization of closed positive currents of type (1,1) by the flow of a Chern connection, in: Contributions to complex analysis and analytic geometry: dedicated to Pierre Dolbeault, ed. H. Skoda and J. M. Trépreau, Wiesbaden, Vieweg 1994. Zbl0824.53064
  5. [G] P. GAUDUCHON, Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris, 285 (1977), 387-390. Zbl0362.53024MR57 #10664
  6. [GT] D. GILBARG and N. TRUDINGER, Elliptic partial differential equations of second order, 2nd ed. Berlin-Heidelberg-New York, Springer, 1983. Zbl0562.35001MR86c:35035
  7. [GH] P. A. GRIFFITHS and J. HARRIS, Principles of Algebraic Geometry, New York, Wiley, 1987. 
  8. [HL] R. HARVEY and H. B. LAWSON, An intrinsic characterisation of Kähler manifolds, Invent. Math., 74 (1983), 169-198. Zbl0553.32008MR85b:32013
  9. [MK] J. MORROW and K. KODAIRA, Complex Manifolds, Holt-Rinehart & Wilson, New York, 1971. Zbl0325.32001MR46 #2080
  10. [M] Y. MIYAOKA, Kähler metrics on elliptic surfaces, Proc. Japan Acad., 50 (1974), 533-536. Zbl0354.32011MR57 #723
  11. [S1] Y.-T. SIU, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27 (1974), 53-156. Zbl0289.32003MR50 #5003
  12. [S2] Y.-T. SIU, Review of [T] in Mathematical Reviews, (1982) MR#82k:32065. 
  13. [S3] Y.-T. SIU, Every K3 surface is Kähler, Invent. Math., 73 (1983), 139-150. Zbl0557.32004MR84j:32036
  14. [T] A. N. TODOROV, Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces, Invent. Math., 61 (1980), 251-265. Zbl0472.14006MR82k:32065
  15. [Y] S.-T. YAU, On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation, Comm. Pure Appl. Math., 31 (1978), 339-411. Zbl0369.53059MR81d:53045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.