Harmonic mappings of Kähler manifolds to locally symmetric spaces

James A. Carlson; Domingo Toledo

Publications Mathématiques de l'IHÉS (1989)

  • Volume: 69, page 173-201
  • ISSN: 0073-8301

How to cite

top

Carlson, James A., and Toledo, Domingo. "Harmonic mappings of Kähler manifolds to locally symmetric spaces." Publications Mathématiques de l'IHÉS 69 (1989): 173-201. <http://eudml.org/doc/104050>.

@article{Carlson1989,
author = {Carlson, James A., Toledo, Domingo},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {harmonic mapping; ordering; domination; Kähler manifold; locally symmetric space},
language = {eng},
pages = {173-201},
publisher = {Institut des Hautes Études Scientifiques},
title = {Harmonic mappings of Kähler manifolds to locally symmetric spaces},
url = {http://eudml.org/doc/104050},
volume = {69},
year = {1989},
}

TY - JOUR
AU - Carlson, James A.
AU - Toledo, Domingo
TI - Harmonic mappings of Kähler manifolds to locally symmetric spaces
JO - Publications Mathématiques de l'IHÉS
PY - 1989
PB - Institut des Hautes Études Scientifiques
VL - 69
SP - 173
EP - 201
LA - eng
KW - harmonic mapping; ordering; domination; Kähler manifold; locally symmetric space
UR - http://eudml.org/doc/104050
ER -

References

top
  1. [1] D. BARLET, Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, Seminaire Norguet 1974-1975, Springer Lecture Notes in Mathematics, 482 (1975). 1-158. Zbl0331.32008MR53 #3347
  2. [2] A. L. BESSE, Manifolds all of whose Geodesics are Closed, Springer-Verlag, 1978. Zbl0387.53010MR80c:53044
  3. [3] E. BISHOP, Conditions for the analyticity of certain sets, Mich. Math. J., 11 (1964), 289-304. Zbl0143.30302MR29 #6057
  4. [4] R. BOTT and H. SAMELSON, Applications of the theory of Morse to symmetric spaces, Amer. Jour. Math., 80 (1958), 964-1029. Zbl0101.39702MR21 #4430
  5. [5] J. A. CARLSON, Bounds on the dimension of a variation of Hodge structure, Trans. A.M.S., 294 (1986), 45-64. Zbl0593.14006MR87j:14010a
  6. [6] J. A. CARLSON and D. TOLEDO, Variations of Hodge structure, Legendre submanifolds and accessibility, Trans. A.M.S., 311 (1989), 391-411. Zbl0667.14004MR90a:32030
  7. [7] R. CHARNEY and R. LEE, Characteristic classes for the classifying spaces of Hodge structures, K-Theory, 1 (1987), 237-270. Zbl0647.14003MR89h:32046
  8. [8] K. CORLETTE, Flat G-bundles with canonical metrics, J. Diff. Geom., 28 (1988), 361-382. Zbl0676.58007MR89k:58066
  9. [9] M. CORNALBA and P. A. GRIFFITHS, Analytic cycles and vector bundles on non-compact algebraic varieties, Invent. Math., 28 (1975), 1-106. Zbl0293.32026MR51 #3505
  10. [10] P. DELIGNE, P. A. GRIFFITHS, J. MORGAN and D. SULLIVAN, Real homotopy theory of Kähler manifolds, Invent. Math., 29 (1975), 245-274. Zbl0312.55011MR52 #3584
  11. [11] J. EELLS and S. SALAMON, Constructions twistorielles des applications harmoniques, C.R. Acad. Sci. Paris, I, 296 (1983), 685-687. Zbl0531.58020MR85a:58023
  12. [12] J. EELLS and J. H. SAMPSON, Harmonic mappings of Riemannian manifolds, Amer. Jour. Math., 86 (1964), 109-160. Zbl0122.40102MR29 #1603
  13. [13] P. A. GRIFFITHS, Periods of integrals on algebraic manifolds, III, Publ. Math. I.H.E.S., 38 (1970), 125-180. Zbl0212.53503
  14. [14] P. A. GRIFFITHS and W. SCHMID, Locally homogeneous complex manifolds, Acta Math., 123 (1969), 253-302. Zbl0209.25701MR41 #4587
  15. [15] S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978. Zbl0451.53038MR80k:53081
  16. [16] J. JOST and S. T. YAU, Harmonic mappings and Kähler manifolds, Math. Ann., 262 (1983), 145-166. Zbl0527.53041MR84d:58022
  17. [17] J. JOST and S. T. YAU, Harmonic maps and group representations, to appear. Zbl0729.58024
  18. [18] D. KAZHDAN, Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl., 1 (1967), 63-65. Zbl0168.27602MR35 #288
  19. [19] B. KOSTANT and S. RALLIS, Orbits and representations associated with symmetric spaces, Amer. Jour. Math., 93 (1971), 753-809. Zbl0224.22013MR47 #399
  20. [20] D. I. LIEBERMANN, Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, Seminaire Norguet 1975-1977, Springer Lecture Notes in Mathematics, 670 (1978), 140-186. Zbl0391.32018
  21. [21] G. A. MARGULIS, Discrete groups of motions of manifolds with non-positive curvature (in Russian), Proc. Int. Cong. Math., Vancouver, 1974, vol. 2, 35-44. 
  22. [22] N. MOK, The holomorphic or anti-holomorphic character of harmonic maps into irreducible compact quotients of polydiscs, Math. Ann., 272 (1985), 197-216. Zbl0604.58021MR86m:22013
  23. [23] J. W. MORGAN, The algebraic topology of smooth algebraic varieties, Publ. Math. I.H.E.S., 48 (1978), 137-204. Zbl0401.14003MR80e:55020
  24. [24] G. D. MOSTOW, Strong Rigidity of Locally Symmetric Spaces, Annals of Math. Studies, 78, Princeton University Press, 1973. Zbl0265.53039MR52 #5874
  25. [25] S. SALAMON, Harmonic and holomorphic maps, Springer Lecture Notes in Mathematics, 1164, 161-224. Zbl0591.53031MR88b:58039
  26. [26] J. H. SAMPSON, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup., 11 (1978), 211-228. Zbl0392.31009MR80b:58031
  27. [27] J. H. SAMPSON, Applications of harmonic maps to Kähler geometry, Contemp. Math., 49 (1986), 125-133. Zbl0605.58019MR87g:58028
  28. [28] Y. T. SIU, Complex analyticity of harmonic maps and strong rigidity of complex Kähler manifolds, Ann. Math., 112 (1980), 73-111. Zbl0517.53058MR81j:53061
  29. [29] Y. T. SIU, Strong rigidity of compact quotients of exceptional bounded symmetric domains, Duke Math. Jour., 48 (1981), 857-871. Zbl0496.32020MR86h:32053
  30. [30] Y. T. SIU, Complex analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Diff. Geom., 17 (1982), 55-138. Zbl0497.32025MR83j:58039
  31. [31] Y. T. SIU, Strong rigidity for Kähler manifolds and the construction of bounded holomorphic functions, in Discrete Groups in Geometry and Analysis, R. HOWE (editor), Birkhauser, 1987, 124-151. Zbl0647.53052MR89i:32044
  32. [32] R. J. ZIMMER, Kazhdan groups acting on compact manifolds, Invent. Math., 75 (1984), 425-436. Zbl0576.22014MR86a:22009

Citations in EuDML Documents

top
  1. Domingo Toledo, Projective varieties with non-residually finite fundamental group
  2. D. Kotschick, Three-manifolds and Kähler groups
  3. Gautam Bharali, Indranil Biswas, Mahan Mj, The Fujiki class and positive degree maps
  4. Christophe Soulé, Classes caractéristiques secondaires des fibrés plats
  5. Pierre Pansu, Sous-groupes discrets des groupes de Lie : rigidité, arithméticité
  6. Carlos T. Simpson, Higgs bundles and local systems
  7. Vincent Koziarz, Julien Maubon, Harmonic maps and representations of non-uniform lattices of PU ( m , 1 )

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.