Optimal boundedness of central oscillating multipliers on compact Lie groups
Jiecheng Chen[1]; Dashan Fan[2]
- [1] Department of Mathematics Zhejiang Normal University Jinhua, Zhejiang 321004 China
- [2] Department of Mathematics University of Wisconsin-Milwaukee Milwaukee, WI 53217 USA
Annales mathématiques Blaise Pascal (2012)
- Volume: 19, Issue: 1, page 123-145
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topChen, Jiecheng, and Fan, Dashan. "Optimal boundedness of central oscillating multipliers on compact Lie groups." Annales mathématiques Blaise Pascal 19.1 (2012): 123-145. <http://eudml.org/doc/251128>.
@article{Chen2012,
abstract = {Fefferman-Stein, Wainger and Sjölin proved optimal $H^\{p\}$ boundedness for certain oscillating multipliers on $\mathbf\{R\}^d$. In this article, we prove an analogue of their result on a compact Lie group.},
affiliation = {Department of Mathematics Zhejiang Normal University Jinhua, Zhejiang 321004 China; Department of Mathematics University of Wisconsin-Milwaukee Milwaukee, WI 53217 USA},
author = {Chen, Jiecheng, Fan, Dashan},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Oscillating multiplier; $ H^\{p\}$ spaces; Compact Lie groups; Fourier series; oscillating multipliers; spaces; compact Lie groups},
language = {eng},
month = {1},
number = {1},
pages = {123-145},
publisher = {Annales mathématiques Blaise Pascal},
title = {Optimal boundedness of central oscillating multipliers on compact Lie groups},
url = {http://eudml.org/doc/251128},
volume = {19},
year = {2012},
}
TY - JOUR
AU - Chen, Jiecheng
AU - Fan, Dashan
TI - Optimal boundedness of central oscillating multipliers on compact Lie groups
JO - Annales mathématiques Blaise Pascal
DA - 2012/1//
PB - Annales mathématiques Blaise Pascal
VL - 19
IS - 1
SP - 123
EP - 145
AB - Fefferman-Stein, Wainger and Sjölin proved optimal $H^{p}$ boundedness for certain oscillating multipliers on $\mathbf{R}^d$. In this article, we prove an analogue of their result on a compact Lie group.
LA - eng
KW - Oscillating multiplier; $ H^{p}$ spaces; Compact Lie groups; Fourier series; oscillating multipliers; spaces; compact Lie groups
UR - http://eudml.org/doc/251128
ER -
References
top- G. Alexopoulos, Oscillating multipliers on Lie groups and Riemannian manifolds, Tohoku Math. J. 46 (1994), 457-468 Zbl0835.22008MR1301284
- C. Bennett, R. Sharpley, Interpolation of Operators, Pure and Applied Math., (1988), Academic Press, Florida Zbl0647.46057MR928802
- B. Blank, D. Fan, spaces on compact Lie groups, Ann. Fac Sci. Toulouse Math. 6 (1997), 429-479 Zbl0899.43004MR1610895
- W. R. Bloom, Z. Xu, Approximation of functions by Bochner-Riesz means on compact Lie groups, Math. Z. 216 (1994), 131-145 Zbl0795.43004MR1273469
- J. Chen, D. Fan, Central Oscillating Multipliers on Compact Lie Groups, Math. Z. 267 (2011), 235-259 Zbl1213.43003MR2772250
- J. Chen, D. Fan, L. Sun, Hardy Space Estimates on Wave Equations on Compact Lie Groups, J. Funct. Anal. 259 (2010), 3230-3264 Zbl1205.43005MR2727645
- J. Chen, S. Wang, Decomposition of BMO functions on normal groups, Acta. Math. Sinica (Ser. A 32 (1989), 345-357 Zbl0682.43008MR1044392
- J. L. Clerc, Bochner-Riesz means of functions () on compact Lie groups, Lecture Notes in Math. 1234 (1987), 86-107 Zbl0625.43003MR897539
- R. Coifman, G. Weiss, Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645 Zbl0358.30023MR447954
- L. Colzani, Hardy space on sphere, Ph.D. Thesis, (1982), Washington University, St Louis Zbl0505.46030
- M. Cowling, A.M. Mantero, F. Ricci, Pointwise estimates for some kernels on compact Lie groups, Rend. Circ. Mat. Palerma 31 (1982), 145-158 Zbl0492.43006MR670392
- Y. Domar, On the spectral synthesis problem for ()-dimensional subset of , Ark. Math. 9 (1971), 23-37 Zbl0212.15004MR324319
- D. Fan, Calderón-Zygmund operators on compact Lie groups, Math. Z. 216 (1994), 401-415 Zbl0841.43019MR1283078
- C. Fefferman, E. M. Stein, space of several variables, Acta Math. 129 (1972), 137-193 Zbl0257.46078MR447953
- S. Giulini, S. Meda, Oscillating multiplier on noncompact symmetric spaces, J. Reine Angew. Math. 409 (1990), 93-105 Zbl0696.43007MR1061520
- R. H. Latter, A characterization of in terms of atoms, Studia Math. 62 (1978), 93-101 Zbl0398.42017MR482111
- W. Littman, Fourier transforms of surface-carried measures and differentiability of surface average, Bull. Amer. Math. Soc. 69 (1963), 766-770 Zbl0143.34701MR155146
- Michel Marias, -boundedness of oscillating spectral multipliers on Riemannian manifolds, Ann. Math. Blaise Pascal 10 (2003), 133-160 Zbl1060.58022MR1990014
- A. Miyachi, On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 267-315 Zbl0469.42003MR633000
- P. Sjölin, An inequality for strongly singular integrals, Math Z. 165 (1979), 231-238 Zbl0393.47034MR523124
- E. M. Stein, Topics in Harmonic Analysis, Ann. of Math. Studies, (1970), Princeton University Press, Princeton, NJ Zbl0193.10502MR252961
- S. Wainger, Special trigonometric series in k dimensions, (1965), Mem. Amer. Math. Soc. Zbl0136.36601MR182838
- G. N. Watson, A Treatise on the Theory of Bessel Functions, (1922), Cambridge University Press, Cambridge Zbl48.0412.02MR1349110
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.