Optimal boundedness of central oscillating multipliers on compact Lie groups

Jiecheng Chen[1]; Dashan Fan[2]

  • [1] Department of Mathematics Zhejiang Normal University Jinhua, Zhejiang 321004 China
  • [2] Department of Mathematics University of Wisconsin-Milwaukee Milwaukee, WI 53217 USA

Annales mathématiques Blaise Pascal (2012)

  • Volume: 19, Issue: 1, page 123-145
  • ISSN: 1259-1734

Abstract

top
Fefferman-Stein, Wainger and Sjölin proved optimal H p boundedness for certain oscillating multipliers on R d . In this article, we prove an analogue of their result on a compact Lie group.

How to cite

top

Chen, Jiecheng, and Fan, Dashan. "Optimal boundedness of central oscillating multipliers on compact Lie groups." Annales mathématiques Blaise Pascal 19.1 (2012): 123-145. <http://eudml.org/doc/251128>.

@article{Chen2012,
abstract = {Fefferman-Stein, Wainger and Sjölin proved optimal $H^\{p\}$ boundedness for certain oscillating multipliers on $\mathbf\{R\}^d$. In this article, we prove an analogue of their result on a compact Lie group.},
affiliation = {Department of Mathematics Zhejiang Normal University Jinhua, Zhejiang 321004 China; Department of Mathematics University of Wisconsin-Milwaukee Milwaukee, WI 53217 USA},
author = {Chen, Jiecheng, Fan, Dashan},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Oscillating multiplier; $ H^\{p\}$ spaces; Compact Lie groups; Fourier series; oscillating multipliers; spaces; compact Lie groups},
language = {eng},
month = {1},
number = {1},
pages = {123-145},
publisher = {Annales mathématiques Blaise Pascal},
title = {Optimal boundedness of central oscillating multipliers on compact Lie groups},
url = {http://eudml.org/doc/251128},
volume = {19},
year = {2012},
}

TY - JOUR
AU - Chen, Jiecheng
AU - Fan, Dashan
TI - Optimal boundedness of central oscillating multipliers on compact Lie groups
JO - Annales mathématiques Blaise Pascal
DA - 2012/1//
PB - Annales mathématiques Blaise Pascal
VL - 19
IS - 1
SP - 123
EP - 145
AB - Fefferman-Stein, Wainger and Sjölin proved optimal $H^{p}$ boundedness for certain oscillating multipliers on $\mathbf{R}^d$. In this article, we prove an analogue of their result on a compact Lie group.
LA - eng
KW - Oscillating multiplier; $ H^{p}$ spaces; Compact Lie groups; Fourier series; oscillating multipliers; spaces; compact Lie groups
UR - http://eudml.org/doc/251128
ER -

References

top
  1. G. Alexopoulos, Oscillating multipliers on Lie groups and Riemannian manifolds, Tohoku Math. J. 46 (1994), 457-468 Zbl0835.22008MR1301284
  2. C. Bennett, R. Sharpley, Interpolation of Operators, Pure and Applied Math., (1988), Academic Press, Florida Zbl0647.46057MR928802
  3. B. Blank, D. Fan, H p spaces on compact Lie groups, Ann. Fac Sci. Toulouse Math. 6 (1997), 429-479 Zbl0899.43004MR1610895
  4. W. R. Bloom, Z. Xu, Approximation of H p functions by Bochner-Riesz means on compact Lie groups, Math. Z. 216 (1994), 131-145 Zbl0795.43004MR1273469
  5. J. Chen, D. Fan, Central Oscillating Multipliers on Compact Lie Groups, Math. Z. 267 (2011), 235-259 Zbl1213.43003MR2772250
  6. J. Chen, D. Fan, L. Sun, Hardy Space Estimates on Wave Equations on Compact Lie Groups, J. Funct. Anal. 259 (2010), 3230-3264 Zbl1205.43005MR2727645
  7. J. Chen, S. Wang, Decomposition of BMO functions on normal groups, Acta. Math. Sinica (Ser. A 32 (1989), 345-357 Zbl0682.43008MR1044392
  8. J. L. Clerc, Bochner-Riesz means of H p functions ( 0 &lt; p &lt; 1 ) on compact Lie groups, Lecture Notes in Math. 1234 (1987), 86-107 Zbl0625.43003MR897539
  9. R. Coifman, G. Weiss, Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645 Zbl0358.30023MR447954
  10. L. Colzani, Hardy space on sphere, Ph.D. Thesis, (1982), Washington University, St Louis Zbl0505.46030
  11. M. Cowling, A.M. Mantero, F. Ricci, Pointwise estimates for some kernels on compact Lie groups, Rend. Circ. Mat. Palerma 31 (1982), 145-158 Zbl0492.43006MR670392
  12. Y. Domar, On the spectral synthesis problem for ( n - 1 )-dimensional subset of n , n 2 , Ark. Math. 9 (1971), 23-37 Zbl0212.15004MR324319
  13. D. Fan, Calderón-Zygmund operators on compact Lie groups, Math. Z. 216 (1994), 401-415 Zbl0841.43019MR1283078
  14. C. Fefferman, E. M. Stein, H p space of several variables, Acta Math. 129 (1972), 137-193 Zbl0257.46078MR447953
  15. S. Giulini, S. Meda, Oscillating multiplier on noncompact symmetric spaces, J. Reine Angew. Math. 409 (1990), 93-105 Zbl0696.43007MR1061520
  16. R. H. Latter, A characterization of H p ( n ) in terms of atoms, Studia Math. 62 (1978), 93-101 Zbl0398.42017MR482111
  17. W. Littman, Fourier transforms of surface-carried measures and differentiability of surface average, Bull. Amer. Math. Soc. 69 (1963), 766-770 Zbl0143.34701MR155146
  18. Michel Marias, L p -boundedness of oscillating spectral multipliers on Riemannian manifolds, Ann. Math. Blaise Pascal 10 (2003), 133-160 Zbl1060.58022MR1990014
  19. A. Miyachi, On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 267-315 Zbl0469.42003MR633000
  20. P. Sjölin, An H p inequality for strongly singular integrals, Math Z. 165 (1979), 231-238 Zbl0393.47034MR523124
  21. E. M. Stein, Topics in Harmonic Analysis, Ann. of Math. Studies, (1970), Princeton University Press, Princeton, NJ Zbl0193.10502MR252961
  22. S. Wainger, Special trigonometric series in k dimensions, (1965), Mem. Amer. Math. Soc. Zbl0136.36601MR182838
  23. G. N. Watson, A Treatise on the Theory of Bessel Functions, (1922), Cambridge University Press, Cambridge Zbl48.0412.02MR1349110

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.