The field-of-norms functor and the Hilbert symbol for higher local fields

Victor Abrashkin[1]; Ruth Jenni

  • [1] Department of Mathematical Sciences Durham University Science Laboratories South Rd, Durham DH1 3LE United Kingdom

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 1, page 1-39
  • ISSN: 1246-7405

Abstract

top
The field-of-norms functor is applied to deduce an explicit formula for the Hilbert symbol in the mixed characteristic case from the explicit formula for the Witt symbol in characteristic p > 2 in the context of higher local fields. Is is shown that a “very special case” of this construction gives Vostokov’s explicit formula.

How to cite

top

Abrashkin, Victor, and Jenni, Ruth. "The field-of-norms functor and the Hilbert symbol for higher local fields." Journal de Théorie des Nombres de Bordeaux 24.1 (2012): 1-39. <http://eudml.org/doc/251132>.

@article{Abrashkin2012,
abstract = {The field-of-norms functor is applied to deduce an explicit formula for the Hilbert symbol in the mixed characteristic case from the explicit formula for the Witt symbol in characteristic $p&gt;2$ in the context of higher local fields. Is is shown that a “very special case” of this construction gives Vostokov’s explicit formula.},
affiliation = {Department of Mathematical Sciences Durham University Science Laboratories South Rd, Durham DH1 3LE United Kingdom},
author = {Abrashkin, Victor, Jenni, Ruth},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {higher local fields; field-of-norms; Hilbert Symbol; Vostokov’s pairing; higher local symbols; Hilbert symbol; fields of norms; Vostokov's pairing},
language = {eng},
month = {3},
number = {1},
pages = {1-39},
publisher = {Société Arithmétique de Bordeaux},
title = {The field-of-norms functor and the Hilbert symbol for higher local fields},
url = {http://eudml.org/doc/251132},
volume = {24},
year = {2012},
}

TY - JOUR
AU - Abrashkin, Victor
AU - Jenni, Ruth
TI - The field-of-norms functor and the Hilbert symbol for higher local fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/3//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 1
SP - 1
EP - 39
AB - The field-of-norms functor is applied to deduce an explicit formula for the Hilbert symbol in the mixed characteristic case from the explicit formula for the Witt symbol in characteristic $p&gt;2$ in the context of higher local fields. Is is shown that a “very special case” of this construction gives Vostokov’s explicit formula.
LA - eng
KW - higher local fields; field-of-norms; Hilbert Symbol; Vostokov’s pairing; higher local symbols; Hilbert symbol; fields of norms; Vostokov's pairing
UR - http://eudml.org/doc/251132
ER -

References

top
  1. V. Abrashkin The field of norms functor and the Brueckner-Vostokov formula. Math. Annalen 308 (1997), 5–19. Zbl0895.11049MR1446195
  2. V. Abrashkin An analogue of the field-of-norms functor and of the Grothendieck Conjecture. J. Algebraic Geom. 16 (2007), no.  4, 671–730. Zbl1135.11064MR2357687
  3. T. V. Belyaeva, S. V.  Vostokov The Hilbert symbol in a complete multidimensional field.I. J. Math. Sci (N.Y.) 120 (2004), no.  4, 1483–1500. Zbl1118.11050MR1875716
  4. S. Bloch, K. Kato p -adic étale cohomology. Publ.  Math.  IHES 63 (1986), 107–152. Zbl0613.14017MR849653
  5. H.  Bass, J. Tate, The Milnor ring of a global field. Lect. Notes Math. 342, Springer-Verlag, Berlin, 1973, 474–486. Zbl0299.12013MR442061
  6. I. B. Fesenko, Sequential topologies and quotients of the Milnor K -groups of higher local fields. Algebra i Analiz 13 (2001), no.3, 198–221; English translation in: St. Petersburg Math. J. 13 (2002), issue 3, 485–501. MR1850194
  7. I. Fesenko, S. Vostokov, Local Fields and their Extensions. Translations of Mathematical Monographs, vol. 121, Amer. Math. Soc., Providence, Rhode Island, 2002. Zbl0781.11042MR1915966
  8. J.-M.Fontaine, Representations p -adiques des corps locaux (1-ere partie). In: The Grothendieck Festschrift, A Collection of Articles in Honor of the 60th Birthday of Alexander Grothendieck, vol.  II, 1990, 249–309. Zbl0743.11066MR1106901
  9. T. Fukaya, The theory of Coleman power series for K 2 . J. Algebraic Geom. 12 (2003), No. 1, 1–80. MR1948685
  10. A. I. Madunts, I. B. Zhukov, Multidimensional complete fields: topology and other basic constructions. Trudy S.Peterb. Mat. Obshch. (1995); English translation in: Amer. Math. Soc. Transl., (Ser.2) 165, 1–34. Zbl0874.11078MR1363290
  11. K. Kato, The explicit reciprocity law and the cohomology of Fontaine-Messing. Bull. Soc. Math. France 109 (1991), no.4, 397–441. Zbl0752.14015MR1136845
  12. F.  Laubie, Extensions de Lie et groupes d’automorphismes de corps locaux. Comp. Math. 67 (1988), 165–189. Zbl0649.12012MR951749
  13. J. Neukirch, Class Field theory. Springer-Verlag, Berlin and New York, 1986. Zbl0587.12001MR819231
  14. A. N. Parshin, Class fields and algebraic K -theory. (Russian). Uspekhi Mat. Nauk 30 (1975), 253–254. Zbl0302.14005MR401710
  15. A. N. Parshin, Local class field theory. (Russian). Algebraic Geometry and its applications, Trudy Mat. Inst. Steklov 165 (1985), 143–170; English translation in: Proc. Steklov Inst. Math., 1985, issue 3, 157–185. Zbl0579.12012MR752939
  16. A. N. Parshin, Galois cohomology and Brauer group of local fields. Trudy Mat. Inst. Steklov (1990); English translation in: Proc. Steklov Inst. Math., 1991, issue 4, 191–201. Zbl0731.11064MR1092028
  17. T. Scholl, Higher fields of norms and ( ϕ , Γ ) -modules. Doc. Math., Extra vol. (2006), 685–709 (electronic). Zbl1186.11070MR2290602
  18. I. R. Shafarevich A general reciprocity law(Russian), Mat. Sb. 26(68) (1950), 113–146 Zbl0036.15901MR31944
  19. S. Vostokov, An explicit form of the reciprocity law. Izv. Akad. Nauk SSSR, Ser. Mat. (1978); English translation in: Math. USSR Izv. 13 (1979), 557–588. Zbl0467.12018MR522940
  20. S. Vostokov, Explicit construction of the theory of class fields of a multidimensional local field. Izv. Akad. Nauk SSSR Ser. Mat., 49 (1985), 283–308. Zbl0608.12017MR791304
  21. S.Zerbes, The higher Hilbert pairing via ( φ ,G)-modules. ArXiv:0705.4269 
  22. I. Zhukov, Higher dimensional local fields. (Münster, 1999), Geom. Topol. Monogr. (2000), no.3, 5–18. Zbl1008.11057MR1804916

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.