The field-of-norms functor and the Hilbert symbol for higher local fields
Victor Abrashkin[1]; Ruth Jenni
- [1] Department of Mathematical Sciences Durham University Science Laboratories South Rd, Durham DH1 3LE United Kingdom
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 1, page 1-39
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topAbrashkin, Victor, and Jenni, Ruth. "The field-of-norms functor and the Hilbert symbol for higher local fields." Journal de Théorie des Nombres de Bordeaux 24.1 (2012): 1-39. <http://eudml.org/doc/251132>.
@article{Abrashkin2012,
abstract = {The field-of-norms functor is applied to deduce an explicit formula for the Hilbert symbol in the mixed characteristic case from the explicit formula for the Witt symbol in characteristic $p>2$ in the context of higher local fields. Is is shown that a “very special case” of this construction gives Vostokov’s explicit formula.},
affiliation = {Department of Mathematical Sciences Durham University Science Laboratories South Rd, Durham DH1 3LE United Kingdom},
author = {Abrashkin, Victor, Jenni, Ruth},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {higher local fields; field-of-norms; Hilbert Symbol; Vostokov’s pairing; higher local symbols; Hilbert symbol; fields of norms; Vostokov's pairing},
language = {eng},
month = {3},
number = {1},
pages = {1-39},
publisher = {Société Arithmétique de Bordeaux},
title = {The field-of-norms functor and the Hilbert symbol for higher local fields},
url = {http://eudml.org/doc/251132},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Abrashkin, Victor
AU - Jenni, Ruth
TI - The field-of-norms functor and the Hilbert symbol for higher local fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/3//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 1
SP - 1
EP - 39
AB - The field-of-norms functor is applied to deduce an explicit formula for the Hilbert symbol in the mixed characteristic case from the explicit formula for the Witt symbol in characteristic $p>2$ in the context of higher local fields. Is is shown that a “very special case” of this construction gives Vostokov’s explicit formula.
LA - eng
KW - higher local fields; field-of-norms; Hilbert Symbol; Vostokov’s pairing; higher local symbols; Hilbert symbol; fields of norms; Vostokov's pairing
UR - http://eudml.org/doc/251132
ER -
References
top- V. Abrashkin The field of norms functor and the Brueckner-Vostokov formula. Math. Annalen 308 (1997), 5–19. Zbl0895.11049MR1446195
- V. Abrashkin An analogue of the field-of-norms functor and of the Grothendieck Conjecture. J. Algebraic Geom. 16 (2007), no. 4, 671–730. Zbl1135.11064MR2357687
- T. V. Belyaeva, S. V. Vostokov The Hilbert symbol in a complete multidimensional field.I. J. Math. Sci (N.Y.) 120 (2004), no. 4, 1483–1500. Zbl1118.11050MR1875716
- S. Bloch, K. Kato -adic étale cohomology. Publ. Math. IHES 63 (1986), 107–152. Zbl0613.14017MR849653
- H. Bass, J. Tate, The Milnor ring of a global field. Lect. Notes Math. 342, Springer-Verlag, Berlin, 1973, 474–486. Zbl0299.12013MR442061
- I. B. Fesenko, Sequential topologies and quotients of the Milnor -groups of higher local fields. Algebra i Analiz 13 (2001), no.3, 198–221; English translation in: St. Petersburg Math. J. 13 (2002), issue 3, 485–501. MR1850194
- I. Fesenko, S. Vostokov, Local Fields and their Extensions. Translations of Mathematical Monographs, vol. 121, Amer. Math. Soc., Providence, Rhode Island, 2002. Zbl0781.11042MR1915966
- J.-M.Fontaine, Representations -adiques des corps locaux (1-ere partie). In: The Grothendieck Festschrift, A Collection of Articles in Honor of the 60th Birthday of Alexander Grothendieck, vol. II, 1990, 249–309. Zbl0743.11066MR1106901
- T. Fukaya, The theory of Coleman power series for . J. Algebraic Geom. 12 (2003), No. 1, 1–80. MR1948685
- A. I. Madunts, I. B. Zhukov, Multidimensional complete fields: topology and other basic constructions. Trudy S.Peterb. Mat. Obshch. (1995); English translation in: Amer. Math. Soc. Transl., (Ser.2) 165, 1–34. Zbl0874.11078MR1363290
- K. Kato, The explicit reciprocity law and the cohomology of Fontaine-Messing. Bull. Soc. Math. France 109 (1991), no.4, 397–441. Zbl0752.14015MR1136845
- F. Laubie, Extensions de Lie et groupes d’automorphismes de corps locaux. Comp. Math. 67 (1988), 165–189. Zbl0649.12012MR951749
- J. Neukirch, Class Field theory. Springer-Verlag, Berlin and New York, 1986. Zbl0587.12001MR819231
- A. N. Parshin, Class fields and algebraic -theory. (Russian). Uspekhi Mat. Nauk 30 (1975), 253–254. Zbl0302.14005MR401710
- A. N. Parshin, Local class field theory. (Russian). Algebraic Geometry and its applications, Trudy Mat. Inst. Steklov 165 (1985), 143–170; English translation in: Proc. Steklov Inst. Math., 1985, issue 3, 157–185. Zbl0579.12012MR752939
- A. N. Parshin, Galois cohomology and Brauer group of local fields. Trudy Mat. Inst. Steklov (1990); English translation in: Proc. Steklov Inst. Math., 1991, issue 4, 191–201. Zbl0731.11064MR1092028
- T. Scholl, Higher fields of norms and -modules. Doc. Math., Extra vol. (2006), 685–709 (electronic). Zbl1186.11070MR2290602
- I. R. Shafarevich A general reciprocity law(Russian), Mat. Sb. 26(68) (1950), 113–146 Zbl0036.15901MR31944
- S. Vostokov, An explicit form of the reciprocity law. Izv. Akad. Nauk SSSR, Ser. Mat. (1978); English translation in: Math. USSR Izv. 13 (1979), 557–588. Zbl0467.12018MR522940
- S. Vostokov, Explicit construction of the theory of class fields of a multidimensional local field. Izv. Akad. Nauk SSSR Ser. Mat., 49 (1985), 283–308. Zbl0608.12017MR791304
- S.Zerbes, The higher Hilbert pairing via (,G)-modules. ArXiv:0705.4269
- I. Zhukov, Higher dimensional local fields. (Münster, 1999), Geom. Topol. Monogr. (2000), no.3, 5–18. Zbl1008.11057MR1804916
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.