On classical weight one forms in Hida families
Mladen Dimitrov[1]; Eknath Ghate[2]
- [1] Laboratoire Paul Painlevé Université Lille 1, U.F.R. de Mathématiques 59655 Villeneuve d’Ascq cedex, France
- [2] School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai 400005, India
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 3, page 669-690
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDimitrov, Mladen, and Ghate, Eknath. "On classical weight one forms in Hida families." Journal de Théorie des Nombres de Bordeaux 24.3 (2012): 669-690. <http://eudml.org/doc/251134>.
@article{Dimitrov2012,
abstract = {We give precise estimates for the number of classical weight one specializations of a non-CM family of ordinary cuspidal eigenforms. We also provide examples to show how uniqueness fails with respect to membership of weight one forms in families.},
affiliation = {Laboratoire Paul Painlevé Université Lille 1, U.F.R. de Mathématiques 59655 Villeneuve d’Ascq cedex, France; School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai 400005, India},
author = {Dimitrov, Mladen, Ghate, Eknath},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Hida family; -adic cusp form; Hecke algebra; Galois representation},
language = {eng},
month = {11},
number = {3},
pages = {669-690},
publisher = {Société Arithmétique de Bordeaux},
title = {On classical weight one forms in Hida families},
url = {http://eudml.org/doc/251134},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Dimitrov, Mladen
AU - Ghate, Eknath
TI - On classical weight one forms in Hida families
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/11//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 3
SP - 669
EP - 690
AB - We give precise estimates for the number of classical weight one specializations of a non-CM family of ordinary cuspidal eigenforms. We also provide examples to show how uniqueness fails with respect to membership of weight one forms in families.
LA - eng
KW - Hida family; -adic cusp form; Hecke algebra; Galois representation
UR - http://eudml.org/doc/251134
ER -
References
top- J. Bellaïche and M. Dimitrov, On the Eigencurve at classical weight one points. Preprint (2012). Zbl06556667
- K. Buzzard and R. Taylor, Companion forms and weight forms. Ann. of Math., 149 (1999), 905–919. Zbl0965.11019MR1709306
- K. Buzzard, Analytic continuation of overconvergent eigenforms. J. Amer. Math. Soc., 16 (2003), 29–55. Zbl1076.11029MR1937198
- S. Cho and V. Vatsal, Deformations of induced Galois representations. J. Reine Angew. Math., 556 (2003), 79–98. Zbl1041.11039MR1971139
- M. Emerton, R. Pollack and T. Weston, Variation of Iwasawa invariants in Hida families. Invent. Math., 163 (2006), 523–580. Zbl1093.11065MR2207234
- A. Fischman, On the image of -adic Galois representations. Ann. Inst. Fourier, Grenoble, 52 (2002), no. 2, 351–378. Zbl1020.11037MR1906479
- E. Ghate and N. Kumar, Control theorems for ordinary -adic families of modular forms. In preparation. Zbl1307.11068
- E. Ghate and V. Vatsal, On the local behaviour of ordinary -adic representations. Ann. Inst. Fourier, Grenoble, 54 (2004), no. 7, 2143–2162. Zbl1131.11341MR2139691
- H. Hida, Galois representations into attached to ordinary cusp forms. Invent. Math., 85 (1986), 545–613. Zbl0612.10021MR848685
- Iwasawa modules attached to congruences of cusp forms. Ann. Sci. Ecole Norm. Sup. (4), 19 (1986), 231–273. Zbl0607.10022MR868300
- J-P. Serre, Modular forms of weight one and Galois representations. Proc. Sympos. Univ. Durham, Durham (1975), Academic Press, London, 1977, 193–268. Zbl0366.10022MR450201
- A. Wiles, On ordinary -adic representations associated to modular forms. Invent. Math., 94 (1988), 529–573. Zbl0664.10013MR969243
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.