On the image of Λ -adic Galois representations

Ami Fischman[1]

  • [1] 517 N 137th Street, Seattle WA 98133 (USA)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 2, page 351-378
  • ISSN: 0373-0956

Abstract

top
We explore the question of how big the image of a Galois representation attached to a Λ -adic modular form with no complex multiplication is and show that for a “generic” set of Λ -adic modular forms (normalized, ordinary eigenforms with no complex multiplication), all have a large image.

How to cite

top

Fischman, Ami. "On the image of $\Lambda $-adic Galois representations." Annales de l’institut Fourier 52.2 (2002): 351-378. <http://eudml.org/doc/115983>.

@article{Fischman2002,
abstract = {We explore the question of how big the image of a Galois representation attached to a $\Lambda $-adic modular form with no complex multiplication is and show that for a “generic” set of $\Lambda $-adic modular forms (normalized, ordinary eigenforms with no complex multiplication), all have a large image.},
affiliation = {517 N 137th Street, Seattle WA 98133 (USA)},
author = {Fischman, Ami},
journal = {Annales de l’institut Fourier},
keywords = {modular form; $p$-adic family; Galois representation; $p$-adic modular form; -adic family; -adic modular form},
language = {eng},
number = {2},
pages = {351-378},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the image of $\Lambda $-adic Galois representations},
url = {http://eudml.org/doc/115983},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Fischman, Ami
TI - On the image of $\Lambda $-adic Galois representations
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 2
SP - 351
EP - 378
AB - We explore the question of how big the image of a Galois representation attached to a $\Lambda $-adic modular form with no complex multiplication is and show that for a “generic” set of $\Lambda $-adic modular forms (normalized, ordinary eigenforms with no complex multiplication), all have a large image.
LA - eng
KW - modular form; $p$-adic family; Galois representation; $p$-adic modular form; -adic family; -adic modular form
UR - http://eudml.org/doc/115983
ER -

References

top
  1. K. Doi, H. Hida, H. Ishii, Discriminant of Hecke fields and twisted adjoint L -values for G L ( 2 ) , Invent. Math. 134 (1998), 547-577 Zbl0924.11035MR1660929
  2. D. Eisenbud, Commutative algebra with a view toward algebraic geometry, (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
  3. A. Fröhlich, M. J. Taylor, Algebraic number theory, (1993), Cambridge University Press, Cambridge Zbl0744.11001MR1215934
  4. F. Q. Gouvêa, On the ordinary Hecke algebra, J. Number Theory 41 (1992), 178-198 Zbl0774.11026MR1164797
  5. H. Hida, Galois representations into G L 2 ( 𝐙 p [ [ X ] ] ) attached to ordinary cusp forms, Invent. Math. 85 (1986), 545-613 Zbl0612.10021MR848685
  6. H. Hida, Hecke algebras for GL 1 and GL 2 , Séminaire de théorie des nombres, Paris 1984--85 (1986), 131-163, Birkhäuser Boston, Boston, Mass. Zbl0648.10020
  7. H. Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4) 19 (1986), 231-273 Zbl0607.10022MR868300
  8. H. Hida, Galois representations and the theory of p-adic Hecke algebras, Sugaku, in Japanese 39 (1987), 124-139 Zbl0641.10025
  9. H. Hida, p-adic hecke algebras and galois representations, Sugaku Expositions 2, (English translation of Hid87) 87 (1989), 75-102 Zbl0686.10023
  10. H. Hida, Elementary theory of L-functions and Eisenstein series, (1993), Cambridge University Press, Cambridge Zbl0942.11024MR1216135
  11. H. Hida, Modular forms and Galois cohomology, (2000), Cambridge University Press, Cambridge Zbl0952.11014MR1779182
  12. F. Momose, On the l-adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 28 (1981), 89-109 Zbl0482.10023MR617867
  13. B. Mazur, A. Wiles, On p-adic analytic families of Galois representations, Compositio Math. 59 (1986), 231-264 Zbl0654.12008MR860140
  14. K. A. Ribet, On l-adic representations attached to modular forms II, Glasgow Math. J. 27 (1985), 185-194 Zbl0596.10027MR819838
  15. J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. (1981), 323-401 Zbl0496.12011MR644559
  16. I. R. Shafarevich, Basic algebraic geometry. 2, (1994), Springer-Verlag, Berlin Zbl0797.14002MR1328834
  17. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1 No. 11 (1971), Publications of the Mathematical Society of Japan, Tokyo Zbl0221.10029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.