On the image of -adic Galois representations
Ami Fischman[1]
- [1] 517 N 137th Street, Seattle WA 98133 (USA)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 2, page 351-378
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFischman, Ami. "On the image of $\Lambda $-adic Galois representations." Annales de l’institut Fourier 52.2 (2002): 351-378. <http://eudml.org/doc/115983>.
@article{Fischman2002,
abstract = {We explore the question of how big the image of a Galois representation attached to a
$\Lambda $-adic modular form with no complex multiplication is and show that for a
“generic” set of $\Lambda $-adic modular forms (normalized, ordinary eigenforms with no
complex multiplication), all have a large image.},
affiliation = {517 N 137th Street, Seattle WA 98133 (USA)},
author = {Fischman, Ami},
journal = {Annales de l’institut Fourier},
keywords = {modular form; $p$-adic family; Galois representation; $p$-adic modular form; -adic family; -adic modular form},
language = {eng},
number = {2},
pages = {351-378},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the image of $\Lambda $-adic Galois representations},
url = {http://eudml.org/doc/115983},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Fischman, Ami
TI - On the image of $\Lambda $-adic Galois representations
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 2
SP - 351
EP - 378
AB - We explore the question of how big the image of a Galois representation attached to a
$\Lambda $-adic modular form with no complex multiplication is and show that for a
“generic” set of $\Lambda $-adic modular forms (normalized, ordinary eigenforms with no
complex multiplication), all have a large image.
LA - eng
KW - modular form; $p$-adic family; Galois representation; $p$-adic modular form; -adic family; -adic modular form
UR - http://eudml.org/doc/115983
ER -
References
top- K. Doi, H. Hida, H. Ishii, Discriminant of Hecke fields and twisted adjoint -values for , Invent. Math. 134 (1998), 547-577 Zbl0924.11035MR1660929
- D. Eisenbud, Commutative algebra with a view toward algebraic geometry, (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
- A. Fröhlich, M. J. Taylor, Algebraic number theory, (1993), Cambridge University Press, Cambridge Zbl0744.11001MR1215934
- F. Q. Gouvêa, On the ordinary Hecke algebra, J. Number Theory 41 (1992), 178-198 Zbl0774.11026MR1164797
- H. Hida, Galois representations into attached to ordinary cusp forms, Invent. Math. 85 (1986), 545-613 Zbl0612.10021MR848685
- H. Hida, Hecke algebras for and , Séminaire de théorie des nombres, Paris 1984--85 (1986), 131-163, Birkhäuser Boston, Boston, Mass. Zbl0648.10020
- H. Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4) 19 (1986), 231-273 Zbl0607.10022MR868300
- H. Hida, Galois representations and the theory of p-adic Hecke algebras, Sugaku, in Japanese 39 (1987), 124-139 Zbl0641.10025
- H. Hida, p-adic hecke algebras and galois representations, Sugaku Expositions 2, (English translation of Hid87) 87 (1989), 75-102 Zbl0686.10023
- H. Hida, Elementary theory of L-functions and Eisenstein series, (1993), Cambridge University Press, Cambridge Zbl0942.11024MR1216135
- H. Hida, Modular forms and Galois cohomology, (2000), Cambridge University Press, Cambridge Zbl0952.11014MR1779182
- F. Momose, On the l-adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 28 (1981), 89-109 Zbl0482.10023MR617867
- B. Mazur, A. Wiles, On p-adic analytic families of Galois representations, Compositio Math. 59 (1986), 231-264 Zbl0654.12008MR860140
- K. A. Ribet, On l-adic representations attached to modular forms II, Glasgow Math. J. 27 (1985), 185-194 Zbl0596.10027MR819838
- J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. (1981), 323-401 Zbl0496.12011MR644559
- I. R. Shafarevich, Basic algebraic geometry. 2, (1994), Springer-Verlag, Berlin Zbl0797.14002MR1328834
- G. Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1 No. 11 (1971), Publications of the Mathematical Society of Japan, Tokyo Zbl0221.10029
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.