Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains
Yong HU[1]
- [1] Université Paris-Sud, Département de Mathématiques, Bâtiment 425, 91405, Orsay Cedex (France)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 6, page 2131-2143
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHU, Yong. "Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains." Annales de l’institut Fourier 62.6 (2012): 2131-2143. <http://eudml.org/doc/251135>.
@article{HU2012,
abstract = {Let $R$ be a 2-dimensional normal excellent henselian local domain in which $2$ is invertible and let $L$ and $k$ be its fraction field and residue field respectively. Let $\Omega _R$ be the set of rank 1 discrete valuations of $L$ corresponding to codimension 1 points of regular proper models of $\operatorname\{Spec\}R$. We prove that a quadratic form $q$ over $L$ satisfies the local-global principle with respect to $\Omega _R$ in the following two cases: (1) $q$ has rank 3 or 4; (2) $q$ has rank $\ge 5$ and $R=A[[y]]$, where $A$ is a complete discrete valuation ring with a not too restrictive condition on the residue field $k$, which is satisfied when $k$ is $C_1$.},
affiliation = {Université Paris-Sud, Département de Mathématiques, Bâtiment 425, 91405, Orsay Cedex (France)},
author = {HU, Yong},
journal = {Annales de l’institut Fourier},
keywords = {2-dimensional local ring; local-global principle; quadratic forms; complete local domain},
language = {eng},
number = {6},
pages = {2131-2143},
publisher = {Association des Annales de l’institut Fourier},
title = {Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains},
url = {http://eudml.org/doc/251135},
volume = {62},
year = {2012},
}
TY - JOUR
AU - HU, Yong
TI - Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 6
SP - 2131
EP - 2143
AB - Let $R$ be a 2-dimensional normal excellent henselian local domain in which $2$ is invertible and let $L$ and $k$ be its fraction field and residue field respectively. Let $\Omega _R$ be the set of rank 1 discrete valuations of $L$ corresponding to codimension 1 points of regular proper models of $\operatorname{Spec}R$. We prove that a quadratic form $q$ over $L$ satisfies the local-global principle with respect to $\Omega _R$ in the following two cases: (1) $q$ has rank 3 or 4; (2) $q$ has rank $\ge 5$ and $R=A[[y]]$, where $A$ is a complete discrete valuation ring with a not too restrictive condition on the residue field $k$, which is satisfied when $k$ is $C_1$.
LA - eng
KW - 2-dimensional local ring; local-global principle; quadratic forms; complete local domain
UR - http://eudml.org/doc/251135
ER -
References
top- M. D. Choi, Z. D. Dai, T. Y. Lam, B. Reznick, The Pythagoras number of some affine algebras and local algebras, J. Reine Angew. Math. 336 (1982), 45-82 Zbl0499.12018MR671321
- J.-L. Colliot-Thélène, M. Ojanguren, R. Parimala, Quadratic forms over fraction fields of two-dimensional Henselian rings and Brauer groups of related schemes, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000) 16 (2002), 185-217, Tata Inst. Fund. Res., Bombay Zbl1055.14019MR1940669
- M. Colliot-Thélène, R. Parimala, V. Suresh, Patching and local-global principle for homogeneous spaces over function fields of -adic curves., Comment. Math. Helv. Zbl1332.11065
- David Harbater, Julia Hartmann, Daniel Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), 231-263 Zbl1259.12003MR2545681
- D. R. Heath-Brown, Zeros of systems of -adic quadratic forms, Compos. Math. 146 (2010), 271-287 Zbl1194.11047MR2601629
- Piotr Jaworski, On the strong Hasse principle for fields of quotients of power series rings in two variables, Math. Z. 236 (2001), 531-566 Zbl1009.11027MR1821304
- János Kollár, Shigefumi Mori, Birational geometry of algebraic varieties, 134 (1998), Cambridge University Press, Cambridge Zbl0926.14003MR1658959
- T. Y. Lam, Introduction to quadratic forms over fields, 67 (2005), American Mathematical Society, Providence, RI Zbl1068.11023MR2104929
- D. Leep, The -invariant of -adic function fields Zbl1276.11050
- Qing Liu, Algebraic geometry and arithmetic curves, 6 (2002), Oxford University Press, Oxford Zbl0996.14005MR1917232
- Raman Parimala, V. Suresh, The -invariant of the function fields of -adic curves, Ann. of Math. (2) 172 (2010), 1391-1405 Zbl1208.11053MR2680494
- Jean-Pierre Serre, Local fields, 67 (1979), Springer-Verlag, New York Zbl0423.12016MR554237
- Lawrence C. Washington, Introduction to cyclotomic fields, 83 (1997), Springer-Verlag, New York Zbl0484.12001MR1421575
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.