Uniqueness of equivariant singular Bott-Chern classes

Shun Tang[1]

  • [1] Université Paris-Sud Département de Mathématiques Bâtiment 425 91405 Orsay cedex (France)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 4, page 1437-1482
  • ISSN: 0373-0956

Abstract

top
In this paper, we shall discuss possible theories of defining equivariant singular Bott-Chern classes and corresponding uniqueness property. By adding a natural axiomatic characterization to the usual ones of equivariant Bott-Chern secondary characteristic classes, we will see that the construction of Bismut’s equivariant Bott-Chern singular currents provides a unique way to define a theory of equivariant singular Bott-Chern classes. This generalizes J. I. Burgos Gil and R. Liţcanu’s discussion to the equivariant case. As a byproduct of this study, we shall prove a concentration formula which can be used to prove an arithmetic concentration theorem in Arakelov geometry.

How to cite

top

Tang, Shun. "Uniqueness of equivariant singular Bott-Chern classes." Annales de l’institut Fourier 62.4 (2012): 1437-1482. <http://eudml.org/doc/251137>.

@article{Tang2012,
abstract = {In this paper, we shall discuss possible theories of defining equivariant singular Bott-Chern classes and corresponding uniqueness property. By adding a natural axiomatic characterization to the usual ones of equivariant Bott-Chern secondary characteristic classes, we will see that the construction of Bismut’s equivariant Bott-Chern singular currents provides a unique way to define a theory of equivariant singular Bott-Chern classes. This generalizes J. I. Burgos Gil and R. Liţcanu’s discussion to the equivariant case. As a byproduct of this study, we shall prove a concentration formula which can be used to prove an arithmetic concentration theorem in Arakelov geometry.},
affiliation = {Université Paris-Sud Département de Mathématiques Bâtiment 425 91405 Orsay cedex (France)},
author = {Tang, Shun},
journal = {Annales de l’institut Fourier},
keywords = {uniqueness; equivariant; singular Bott-Chern classes; singular Bott-Chern forms; Riemann-Roch; equivariant secondary classes; axiomatic for Bott-Chern forms},
language = {eng},
number = {4},
pages = {1437-1482},
publisher = {Association des Annales de l’institut Fourier},
title = {Uniqueness of equivariant singular Bott-Chern classes},
url = {http://eudml.org/doc/251137},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Tang, Shun
TI - Uniqueness of equivariant singular Bott-Chern classes
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 4
SP - 1437
EP - 1482
AB - In this paper, we shall discuss possible theories of defining equivariant singular Bott-Chern classes and corresponding uniqueness property. By adding a natural axiomatic characterization to the usual ones of equivariant Bott-Chern secondary characteristic classes, we will see that the construction of Bismut’s equivariant Bott-Chern singular currents provides a unique way to define a theory of equivariant singular Bott-Chern classes. This generalizes J. I. Burgos Gil and R. Liţcanu’s discussion to the equivariant case. As a byproduct of this study, we shall prove a concentration formula which can be used to prove an arithmetic concentration theorem in Arakelov geometry.
LA - eng
KW - uniqueness; equivariant; singular Bott-Chern classes; singular Bott-Chern forms; Riemann-Roch; equivariant secondary classes; axiomatic for Bott-Chern forms
UR - http://eudml.org/doc/251137
ER -

References

top
  1. Théorie des intersections et théorème de Riemann-Roch, (1971), Springer-Verlag, Berlin MR354655
  2. Jean-Michel Bismut, Equivariant immersions and Quillen metrics, J. Differential Geom. 41 (1995), 53-157 Zbl0826.32024MR1316553
  3. Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), 49-78 Zbl0651.32017
  4. Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Bott-Chern currents and complex immersions, Duke Math. J. 60 (1990), 255-284 Zbl0697.58005
  5. Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Complex immersions and Arakelov geometry, The Grothendieck Festschrift, Vol. I 86 (1990), 249-331, Birkhäuser Boston, Boston, MA Zbl0744.14015MR1086887
  6. J. I. Burgos Gil, R. Liţcanu, Singular Bott-Chern classes and the arithmetic Grothendieck Riemann Roch theroem for closed immersions, Documenta Math. 15 (2010), 73-176 Zbl1192.14019MR2628847
  7. S. Eilenberg, Homological dimension and local syzygies, Annals of Math. 64 (1956), 328-336 Zbl0073.26003MR82489
  8. Henri Gillet, Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. (1990), 93-174 (1991) Zbl0741.14012MR1087394
  9. Henri Gillet, Christophe Soulé, An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), 473-543 Zbl0777.14008MR1189489
  10. Phillip Griffiths, Joseph Harris, Principles of algebraic geometry, (1994), John Wiley & Sons Inc., New York Zbl0836.14001MR1288523
  11. F. Hirzebruch, Topological methods in algebraic geometry, (1966), Springer-Verlag New York, Inc., New York Zbl0376.14001MR1335917
  12. Lars Hörmander, The analysis of linear partial differential operators. I, 256 (1983), Springer-Verlag, Berlin Zbl0521.35001MR717035
  13. Bernhard Köck, The Grothendieck-Riemann-Roch theorem for group scheme actions, Ann. Sci. École Norm. Sup. (4) 31 (1998), 415-458 Zbl0951.14029MR1621405
  14. Kai Köhler, Damian Roessler, A fixed point formula of Lefschetz type in Arakelov geometry. I. Statement and proof, Invent. Math. 145 (2001), 333-396 Zbl0999.14002MR1872550
  15. Pierre Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239-262 Zbl0079.30901MR95967
  16. Georges de Rham, Variétés différentiables. Formes, courants, formes harmoniques, (1966), Hermann, Paris Zbl0065.32401
  17. R. W. Thomason, Une formule de Lefschetz en K -théorie équivariante algébrique, Duke Math. J. 68 (1992), 447-462 Zbl0813.19002MR1194949

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.