Uniqueness of equivariant singular Bott-Chern classes
Shun Tang[1]
- [1] Université Paris-Sud Département de Mathématiques Bâtiment 425 91405 Orsay cedex (France)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 4, page 1437-1482
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTang, Shun. "Uniqueness of equivariant singular Bott-Chern classes." Annales de l’institut Fourier 62.4 (2012): 1437-1482. <http://eudml.org/doc/251137>.
@article{Tang2012,
abstract = {In this paper, we shall discuss possible theories of defining equivariant singular Bott-Chern classes and corresponding uniqueness property. By adding a natural axiomatic characterization to the usual ones of equivariant Bott-Chern secondary characteristic classes, we will see that the construction of Bismut’s equivariant Bott-Chern singular currents provides a unique way to define a theory of equivariant singular Bott-Chern classes. This generalizes J. I. Burgos Gil and R. Liţcanu’s discussion to the equivariant case. As a byproduct of this study, we shall prove a concentration formula which can be used to prove an arithmetic concentration theorem in Arakelov geometry.},
affiliation = {Université Paris-Sud Département de Mathématiques Bâtiment 425 91405 Orsay cedex (France)},
author = {Tang, Shun},
journal = {Annales de l’institut Fourier},
keywords = {uniqueness; equivariant; singular Bott-Chern classes; singular Bott-Chern forms; Riemann-Roch; equivariant secondary classes; axiomatic for Bott-Chern forms},
language = {eng},
number = {4},
pages = {1437-1482},
publisher = {Association des Annales de l’institut Fourier},
title = {Uniqueness of equivariant singular Bott-Chern classes},
url = {http://eudml.org/doc/251137},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Tang, Shun
TI - Uniqueness of equivariant singular Bott-Chern classes
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 4
SP - 1437
EP - 1482
AB - In this paper, we shall discuss possible theories of defining equivariant singular Bott-Chern classes and corresponding uniqueness property. By adding a natural axiomatic characterization to the usual ones of equivariant Bott-Chern secondary characteristic classes, we will see that the construction of Bismut’s equivariant Bott-Chern singular currents provides a unique way to define a theory of equivariant singular Bott-Chern classes. This generalizes J. I. Burgos Gil and R. Liţcanu’s discussion to the equivariant case. As a byproduct of this study, we shall prove a concentration formula which can be used to prove an arithmetic concentration theorem in Arakelov geometry.
LA - eng
KW - uniqueness; equivariant; singular Bott-Chern classes; singular Bott-Chern forms; Riemann-Roch; equivariant secondary classes; axiomatic for Bott-Chern forms
UR - http://eudml.org/doc/251137
ER -
References
top- Théorie des intersections et théorème de Riemann-Roch, (1971), Springer-Verlag, Berlin MR354655
- Jean-Michel Bismut, Equivariant immersions and Quillen metrics, J. Differential Geom. 41 (1995), 53-157 Zbl0826.32024MR1316553
- Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), 49-78 Zbl0651.32017
- Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Bott-Chern currents and complex immersions, Duke Math. J. 60 (1990), 255-284 Zbl0697.58005
- Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Complex immersions and Arakelov geometry, The Grothendieck Festschrift, Vol. I 86 (1990), 249-331, Birkhäuser Boston, Boston, MA Zbl0744.14015MR1086887
- J. I. Burgos Gil, R. Liţcanu, Singular Bott-Chern classes and the arithmetic Grothendieck Riemann Roch theroem for closed immersions, Documenta Math. 15 (2010), 73-176 Zbl1192.14019MR2628847
- S. Eilenberg, Homological dimension and local syzygies, Annals of Math. 64 (1956), 328-336 Zbl0073.26003MR82489
- Henri Gillet, Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. (1990), 93-174 (1991) Zbl0741.14012MR1087394
- Henri Gillet, Christophe Soulé, An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), 473-543 Zbl0777.14008MR1189489
- Phillip Griffiths, Joseph Harris, Principles of algebraic geometry, (1994), John Wiley & Sons Inc., New York Zbl0836.14001MR1288523
- F. Hirzebruch, Topological methods in algebraic geometry, (1966), Springer-Verlag New York, Inc., New York Zbl0376.14001MR1335917
- Lars Hörmander, The analysis of linear partial differential operators. I, 256 (1983), Springer-Verlag, Berlin Zbl0521.35001MR717035
- Bernhard Köck, The Grothendieck-Riemann-Roch theorem for group scheme actions, Ann. Sci. École Norm. Sup. (4) 31 (1998), 415-458 Zbl0951.14029MR1621405
- Kai Köhler, Damian Roessler, A fixed point formula of Lefschetz type in Arakelov geometry. I. Statement and proof, Invent. Math. 145 (2001), 333-396 Zbl0999.14002MR1872550
- Pierre Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239-262 Zbl0079.30901MR95967
- Georges de Rham, Variétés différentiables. Formes, courants, formes harmoniques, (1966), Hermann, Paris Zbl0065.32401
- R. W. Thomason, Une formule de Lefschetz en -théorie équivariante algébrique, Duke Math. J. 68 (1992), 447-462 Zbl0813.19002MR1194949
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.