Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations
Zhuangchu Luo[1]; Hua Chen[2]; Changgui Zhang[3]
- [1] Wuhan University, School of Mathematics and Statistics, Wuhan 430072, China
- [2] Wuhan University, School of Mathematics and Statistics, Wuhan 430072, China
- [3] Université de Lille 1, Laboratoire P. Painlevé (UMR–CNRS 8524), UFR Math., Cité scientifique, 59655 Villeneuve d’Ascq cedex, France
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 2, page 571-618
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLuo, Zhuangchu, Chen, Hua, and Zhang, Changgui. "Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations." Annales de l’institut Fourier 62.2 (2012): 571-618. <http://eudml.org/doc/251139>.
@article{Luo2012,
abstract = {In this paper, we study a class of first order nonlinear degenerate partial differential equations with singularity at $(t,x)=(0,0)\in \mathbf\{C\}^2$. Using exponential-type Nagumo norm approach, the Gevrey asymptotic analysis is extended to case of holomorphic parameters in a natural way. A sharp condition is then established to deduce the $k$-summability of the formal solutions. Furthermore, analytical solutions in conical domains are found for each type of these nonlinear singular PDEs.},
affiliation = {Wuhan University, School of Mathematics and Statistics, Wuhan 430072, China; Wuhan University, School of Mathematics and Statistics, Wuhan 430072, China; Université de Lille 1, Laboratoire P. Painlevé (UMR–CNRS 8524), UFR Math., Cité scientifique, 59655 Villeneuve d’Ascq cedex, France},
author = {Luo, Zhuangchu, Chen, Hua, Zhang, Changgui},
journal = {Annales de l’institut Fourier},
keywords = {Nagumo norm; singular differential equations; Fuchsian singularity; Borel summability; Stokes phenomenon; $k$-summability; holomorphic parameters; -summability},
language = {eng},
number = {2},
pages = {571-618},
publisher = {Association des Annales de l’institut Fourier},
title = {Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations},
url = {http://eudml.org/doc/251139},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Luo, Zhuangchu
AU - Chen, Hua
AU - Zhang, Changgui
TI - Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 571
EP - 618
AB - In this paper, we study a class of first order nonlinear degenerate partial differential equations with singularity at $(t,x)=(0,0)\in \mathbf{C}^2$. Using exponential-type Nagumo norm approach, the Gevrey asymptotic analysis is extended to case of holomorphic parameters in a natural way. A sharp condition is then established to deduce the $k$-summability of the formal solutions. Furthermore, analytical solutions in conical domains are found for each type of these nonlinear singular PDEs.
LA - eng
KW - Nagumo norm; singular differential equations; Fuchsian singularity; Borel summability; Stokes phenomenon; $k$-summability; holomorphic parameters; -summability
UR - http://eudml.org/doc/251139
ER -
References
top- W. Balser, Formal power series and linear systems of meromorphic ordinary differential equations, (2000), Springer-Verlag, New York Zbl0942.34004MR1722871
- W. Balser, Multisummability of formal power series solutions of partial differential equations with constant coefficients, J. Differential Equations 201 (2004), 63-74 Zbl1052.35048MR2057538
- B. L. J. Braaksma, Multisummability of formal power series solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier 42 (1992), 517-540 Zbl0759.34003MR1182640
- M. Canalis-Durand, J.-P. Ramis, R. Schäfke, Y. Sibuya, Gevrey solutions of singularly perturbed differential equations, J. Reine Angew. Math. 518 (2000), 95-129 Zbl0937.34075MR1739408
- H. Chen, Z. Luo, On the holomorphic solution of non-linear totally characteristic equations with several space variables, Acta Mathematica Scientia 22B (2002), 393-403 Zbl1003.35005MR1921319
- H. Chen, Z. Luo, H. Tahara, Formal solution of nonlinear first order totally characteristic type PDE with irregular singularity, Ann. Inst. Fourier 51 (2001), 1599-1620 Zbl0993.35003MR1871282
- H. Chen, Z. Luo, C. Zhang, On the summability of formal solutions for a class of nonlinear singular PDEs with irregular singularity, Contemporary of Mathematics 400 (2006), 53-64, Amer. Math. Soc. Zbl1098.35006MR2222465
- H. Chen, H. Tahara, On totally characteristic type non-linear differential equations in the Complex Domain, Publ. RIMS, Kyoto Univ. 35 (1999), 621-636 Zbl0961.35002MR1719863
- H. Chen, H. Tahara, On the holomorphic solution of non-linear totally characteristic equations, Mathematische Nachrichten 219 (2000), 85-96 Zbl1017.35006MR1791913
- O. Costin, S. Tanveer, Existence and uniqueness for a class of nonlinear higher-order partial differential equations in the complex plane, Comm. Pure and Appl. Math. LIII (2000), 0001-0026 Zbl1069.35003MR1761410
- L. Di Vizio, An ultrametric version of the Maillet-Malgrange theorem for non linear q-difference equations, Proc. Amer. Math. Soc. 136 (2008), 2803-2814 Zbl1152.33011MR2399044
- P.C. Fife, J.B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal. 65 (1977), 335-361 Zbl0361.35035MR442480
- R. Gérard, H. Tahara, Singular nonlinear partial differential equations, (1996), Vieweg Verlag Zbl0874.35001MR1757086
- M. Gevrey, Sur les équations aux dérivées partielles du type parabolique, J. de Mathématique 9 (1913), 305-476
- P. S. Hagan, J. R. Ockendon, Half-range analysis of a counter-current separator, J. Math. Anal. Appl. 160 (1991), 358-378 Zbl0753.76190MR1126123
- M. Hibino, Borel summability of divergent solutions for singular first order linear partial differential equations with polynomial coefficients, J. Math. Sci. Univ. Tokyo 10 (2003), 279-309 Zbl1036.35051MR1987134
- M. Hibino, Borel summability of divergence solutions for singular first-order partial differential equations with variable coefficients. I, J. Differential Equations 227 (2006), 499-533 Zbl1147.35016MR2237677
- M. Hibino, Borel summability of divergent solutions for singular first-order partial differential equations with variable coefficients. II, J. Differential Equations 227 (2006), 534-563 Zbl1147.35017MR2237678
- L. Hörmander, An introduction to complex analysis in several variables, (1990), North-Holland Publishing Co., Amsterdam Zbl0271.32001MR1045639
- Z. Luo, H. Chen, C. Zhang, On the summability of the formal solutions for some PDEs with irregular singularity, C.R. Acad. Sci. Paris Sér. I, 336 (2003), 219-224 Zbl1028.35006MR1968262
- Z. Luo, C. Zhang, On the Borel summability of divergent power series respective to two variables, (Preprint, 2010)
- D. A. Lutz, M. Miyake, R. Schäfke, On the Borel summability of divergent solutions of the heat equation, Nagoya Math. J. 154 (1999), 1-29 Zbl0958.35061MR1689170
- B. Malgrange, Sur le théorème de Maillet, Asymptot. Anal. 2 (1989), 1-4 Zbl0693.34004MR991413
- J. Martinet, J.-P. Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math., Inst. Hautes Études Sci. 55 (1982), 63-164 Zbl0546.58038MR672182
- J. Martinet, J.-P. Ramis, Elementary acceleration and multisummability I, Annales de l’I.H.P. Physique théorique 54 (1991), 331-401 Zbl0748.12005MR1128863
- M. Nagumo, Über das Anfangswertproblem partieller Differentialgleichungen, Jap. J. Math. 18 (1942), 41-47 Zbl0061.21107MR15186
- S. Ouchi, Multisummability of formal solutions of some linear partial differential equations, J. Differential Equations 185 (2002), 513-549 Zbl1020.35018MR1935612
- S. Ouchi, Borel summability of formal solutions of some first order singular partial differential equations and normal forms of vector fields, J. Math. Soc. Japan 57 (2005), 415-460 Zbl1082.35046MR2123239
- S. Ouchi, Multisummability of formal power series solutions of nonlinear partial differential equations in complex domains, Asymptot. Anal. 47 (2006), 187-225 Zbl1152.35015MR2233920
- C. D. Pagani, G. Talenti, On a forward-backward parabolic equation, Ann. Mat. Pura. Appl. 90 (1971), 1-57 Zbl0238.35043MR313635
- J.-P. Ramis, Les séries -sommables et leurs applications, Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory 126 (1980), 178-199, Springer-Verlag, New York Zbl1251.32008MR579749
- J.-C. Tougeron, Sur les ensembles semi-analytiques avec conditions Gevrey au bord, Ann. Sci. École Norm. Sup. 27 (1994), 173-208 Zbl0803.32003MR1266469
- C. Zhang, Sur un théorème du type de Maillet-Malgrange pour les équations -différences-différentielles, Asymptot. Anal. 17 (1998), 309-314 Zbl0938.34064MR1656811
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.