Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations

Zhuangchu Luo[1]; Hua Chen[2]; Changgui Zhang[3]

  • [1] Wuhan University, School of Mathematics and Statistics, Wuhan 430072, China
  • [2] Wuhan University, School of Mathematics and Statistics, Wuhan 430072, China
  • [3] Université de Lille 1, Laboratoire P. Painlevé (UMR–CNRS 8524), UFR Math., Cité scientifique, 59655 Villeneuve d’Ascq cedex, France

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 2, page 571-618
  • ISSN: 0373-0956

Abstract

top
In this paper, we study a class of first order nonlinear degenerate partial differential equations with singularity at ( t , x ) = ( 0 , 0 ) C 2 . Using exponential-type Nagumo norm approach, the Gevrey asymptotic analysis is extended to case of holomorphic parameters in a natural way. A sharp condition is then established to deduce the k -summability of the formal solutions. Furthermore, analytical solutions in conical domains are found for each type of these nonlinear singular PDEs.

How to cite

top

Luo, Zhuangchu, Chen, Hua, and Zhang, Changgui. "Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations." Annales de l’institut Fourier 62.2 (2012): 571-618. <http://eudml.org/doc/251139>.

@article{Luo2012,
abstract = {In this paper, we study a class of first order nonlinear degenerate partial differential equations with singularity at $(t,x)=(0,0)\in \mathbf\{C\}^2$. Using exponential-type Nagumo norm approach, the Gevrey asymptotic analysis is extended to case of holomorphic parameters in a natural way. A sharp condition is then established to deduce the $k$-summability of the formal solutions. Furthermore, analytical solutions in conical domains are found for each type of these nonlinear singular PDEs.},
affiliation = {Wuhan University, School of Mathematics and Statistics, Wuhan 430072, China; Wuhan University, School of Mathematics and Statistics, Wuhan 430072, China; Université de Lille 1, Laboratoire P. Painlevé (UMR–CNRS 8524), UFR Math., Cité scientifique, 59655 Villeneuve d’Ascq cedex, France},
author = {Luo, Zhuangchu, Chen, Hua, Zhang, Changgui},
journal = {Annales de l’institut Fourier},
keywords = {Nagumo norm; singular differential equations; Fuchsian singularity; Borel summability; Stokes phenomenon; $k$-summability; holomorphic parameters; -summability},
language = {eng},
number = {2},
pages = {571-618},
publisher = {Association des Annales de l’institut Fourier},
title = {Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations},
url = {http://eudml.org/doc/251139},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Luo, Zhuangchu
AU - Chen, Hua
AU - Zhang, Changgui
TI - Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 571
EP - 618
AB - In this paper, we study a class of first order nonlinear degenerate partial differential equations with singularity at $(t,x)=(0,0)\in \mathbf{C}^2$. Using exponential-type Nagumo norm approach, the Gevrey asymptotic analysis is extended to case of holomorphic parameters in a natural way. A sharp condition is then established to deduce the $k$-summability of the formal solutions. Furthermore, analytical solutions in conical domains are found for each type of these nonlinear singular PDEs.
LA - eng
KW - Nagumo norm; singular differential equations; Fuchsian singularity; Borel summability; Stokes phenomenon; $k$-summability; holomorphic parameters; -summability
UR - http://eudml.org/doc/251139
ER -

References

top
  1. W. Balser, Formal power series and linear systems of meromorphic ordinary differential equations, (2000), Springer-Verlag, New York Zbl0942.34004MR1722871
  2. W. Balser, Multisummability of formal power series solutions of partial differential equations with constant coefficients, J. Differential Equations 201 (2004), 63-74 Zbl1052.35048MR2057538
  3. B. L. J. Braaksma, Multisummability of formal power series solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier 42 (1992), 517-540 Zbl0759.34003MR1182640
  4. M. Canalis-Durand, J.-P. Ramis, R. Schäfke, Y. Sibuya, Gevrey solutions of singularly perturbed differential equations, J. Reine Angew. Math. 518 (2000), 95-129 Zbl0937.34075MR1739408
  5. H. Chen, Z. Luo, On the holomorphic solution of non-linear totally characteristic equations with several space variables, Acta Mathematica Scientia 22B (2002), 393-403 Zbl1003.35005MR1921319
  6. H. Chen, Z. Luo, H. Tahara, Formal solution of nonlinear first order totally characteristic type PDE with irregular singularity, Ann. Inst. Fourier 51 (2001), 1599-1620 Zbl0993.35003MR1871282
  7. H. Chen, Z. Luo, C. Zhang, On the summability of formal solutions for a class of nonlinear singular PDEs with irregular singularity, Contemporary of Mathematics 400 (2006), 53-64, Amer. Math. Soc. Zbl1098.35006MR2222465
  8. H. Chen, H. Tahara, On totally characteristic type non-linear differential equations in the Complex Domain, Publ. RIMS, Kyoto Univ. 35 (1999), 621-636 Zbl0961.35002MR1719863
  9. H. Chen, H. Tahara, On the holomorphic solution of non-linear totally characteristic equations, Mathematische Nachrichten 219 (2000), 85-96 Zbl1017.35006MR1791913
  10. O. Costin, S. Tanveer, Existence and uniqueness for a class of nonlinear higher-order partial differential equations in the complex plane, Comm. Pure and Appl. Math. LIII (2000), 0001-0026 Zbl1069.35003MR1761410
  11. L. Di Vizio, An ultrametric version of the Maillet-Malgrange theorem for non linear q-difference equations, Proc. Amer. Math. Soc. 136 (2008), 2803-2814 Zbl1152.33011MR2399044
  12. P.C. Fife, J.B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal. 65 (1977), 335-361 Zbl0361.35035MR442480
  13. R. Gérard, H. Tahara, Singular nonlinear partial differential equations, (1996), Vieweg Verlag Zbl0874.35001MR1757086
  14. M. Gevrey, Sur les équations aux dérivées partielles du type parabolique, J. de Mathématique 9 (1913), 305-476 
  15. P. S. Hagan, J. R. Ockendon, Half-range analysis of a counter-current separator, J. Math. Anal. Appl. 160 (1991), 358-378 Zbl0753.76190MR1126123
  16. M. Hibino, Borel summability of divergent solutions for singular first order linear partial differential equations with polynomial coefficients, J. Math. Sci. Univ. Tokyo 10 (2003), 279-309 Zbl1036.35051MR1987134
  17. M. Hibino, Borel summability of divergence solutions for singular first-order partial differential equations with variable coefficients. I, J. Differential Equations 227 (2006), 499-533 Zbl1147.35016MR2237677
  18. M. Hibino, Borel summability of divergent solutions for singular first-order partial differential equations with variable coefficients. II, J. Differential Equations 227 (2006), 534-563 Zbl1147.35017MR2237678
  19. L. Hörmander, An introduction to complex analysis in several variables, (1990), North-Holland Publishing Co., Amsterdam Zbl0271.32001MR1045639
  20. Z. Luo, H. Chen, C. Zhang, On the summability of the formal solutions for some PDEs with irregular singularity, C.R. Acad. Sci. Paris Sér. I, 336 (2003), 219-224 Zbl1028.35006MR1968262
  21. Z. Luo, C. Zhang, On the Borel summability of divergent power series respective to two variables, (Preprint, 2010) 
  22. D. A. Lutz, M. Miyake, R. Schäfke, On the Borel summability of divergent solutions of the heat equation, Nagoya Math. J. 154 (1999), 1-29 Zbl0958.35061MR1689170
  23. B. Malgrange, Sur le théorème de Maillet, Asymptot. Anal. 2 (1989), 1-4 Zbl0693.34004MR991413
  24. J. Martinet, J.-P. Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math., Inst. Hautes Études Sci. 55 (1982), 63-164 Zbl0546.58038MR672182
  25. J. Martinet, J.-P. Ramis, Elementary acceleration and multisummability I, Annales de l’I.H.P. Physique théorique 54 (1991), 331-401 Zbl0748.12005MR1128863
  26. M. Nagumo, Über das Anfangswertproblem partieller Differentialgleichungen, Jap. J. Math. 18 (1942), 41-47 Zbl0061.21107MR15186
  27. S. Ouchi, Multisummability of formal solutions of some linear partial differential equations, J. Differential Equations 185 (2002), 513-549 Zbl1020.35018MR1935612
  28. S. Ouchi, Borel summability of formal solutions of some first order singular partial differential equations and normal forms of vector fields, J. Math. Soc. Japan 57 (2005), 415-460 Zbl1082.35046MR2123239
  29. S. Ouchi, Multisummability of formal power series solutions of nonlinear partial differential equations in complex domains, Asymptot. Anal. 47 (2006), 187-225 Zbl1152.35015MR2233920
  30. C. D. Pagani, G. Talenti, On a forward-backward parabolic equation, Ann. Mat. Pura. Appl. 90 (1971), 1-57 Zbl0238.35043MR313635
  31. J.-P. Ramis, Les séries k -sommables et leurs applications, Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory 126 (1980), 178-199, Springer-Verlag, New York Zbl1251.32008MR579749
  32. J.-C. Tougeron, Sur les ensembles semi-analytiques avec conditions Gevrey au bord, Ann. Sci. École Norm. Sup. 27 (1994), 173-208 Zbl0803.32003MR1266469
  33. C. Zhang, Sur un théorème du type de Maillet-Malgrange pour les équations q -différences-différentielles, Asymptot. Anal. 17 (1998), 309-314 Zbl0938.34064MR1656811

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.