Multisummability of formal power series solutions of nonlinear meromorphic differential equations
Annales de l'institut Fourier (1992)
- Volume: 42, Issue: 3, page 517-540
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBraaksma, Boele L. J.. "Multisummability of formal power series solutions of nonlinear meromorphic differential equations." Annales de l'institut Fourier 42.3 (1992): 517-540. <http://eudml.org/doc/74965>.
@article{Braaksma1992,
abstract = {In this paper a proof is given of a theorem of J. Écalle that formal power series solutions of nonlinear meromorphic differential equations are multisummable.},
author = {Braaksma, Boele L. J.},
journal = {Annales de l'institut Fourier},
keywords = {multisummability; Laplace transform; Borel transform; acceleration; formal power series solutions; nonlinear meromorphic differential equations; multisummable},
language = {eng},
number = {3},
pages = {517-540},
publisher = {Association des Annales de l'Institut Fourier},
title = {Multisummability of formal power series solutions of nonlinear meromorphic differential equations},
url = {http://eudml.org/doc/74965},
volume = {42},
year = {1992},
}
TY - JOUR
AU - Braaksma, Boele L. J.
TI - Multisummability of formal power series solutions of nonlinear meromorphic differential equations
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 3
SP - 517
EP - 540
AB - In this paper a proof is given of a theorem of J. Écalle that formal power series solutions of nonlinear meromorphic differential equations are multisummable.
LA - eng
KW - multisummability; Laplace transform; Borel transform; acceleration; formal power series solutions; nonlinear meromorphic differential equations; multisummable
UR - http://eudml.org/doc/74965
ER -
References
top- [1] W. BALSER, A different characterization of multisummable power series, preprint Universität Ulm, (1990).
- [2] W. BALSER, Summation of formal power series through iterated Laplace integrals, preprint Universität Ulm, (1990). Zbl0769.34004
- [3] W. BALSER, B. L. J. BRAAKSMA, J.-P. RAMIS and Y. SIBUYA, Multisummability of formal power series solutions of linear ordinary differential equations, Asymptotic Analysis, 5 (1991), 27-45. Zbl0754.34057MR93f:34011
- [4] B. L. J. BRAAKSMA, Laplace integrals in singular differential and difference equations, in Proc. Conf. Ordinary and Partial Differential Equations Dundee, 1978, Lecture Notes in Mathematics, Vol. 827, Springer Verlag, (1980), 25-53. Zbl0449.34005MR82f:34064
- [5] B. L. J. BRAAKSMA, Multisummability and Stokes multipliers of linear meromorphic differential equations, J. Differential Equations, 92 (1991), 45-75. Zbl0729.34005MR93c:34010
- [6] J. ECALLE, Les Fonctions Résurgentes, Tome I, II, Publ. Math. d'Orsay (1981), Tome III, Idem (1985). Zbl0499.30034
- [7] J. ECALLE, L'accélération des fonctions résurgentes, manuscrit, 1987.
- [8] J. ECALLE, Calcul accélératoire et applications, book submitted to "Travaux en Cours" Hermann, Paris, (1990). (See also The acceleration operators and their applications, invited address ICM Kyoto (1990)).
- [9] M. HUKUHARA, Sur les points singuliers des équations différentielles linéaires II, J. Fac. Sci. Hokkaido Univ., 5 (1937), 123-166. Zbl0016.30502JFM64.1144.01
- [10] W. B. JURKAT, Summability of asymptotic series, preprint Universität Ulm (1990).
- [11] B. MALGRANGE, Sur les points singuliers des équations différentielles linéaires, Enseign. Math., 20 (1974), 147-176. Zbl0299.34011MR51 #4316
- [12] B. MALGRANGE and J.-P. RAMIS, Fonctions multisommables, Ann. Inst. Fourier, Grenoble, 42-1 & 2 (1992), 353-368. Zbl0759.34007MR93e:40007
- [13] J. MARTINET and J.-P. RAMIS, Elementary acceleration and multisummability, Ann. Inst. H. Poincaré, Physique Théorique, 54-1 (1991), 1-71. Zbl0748.12005MR93a:32036
- [14] J.-P. RAMIS, Conjectures, manuscrit, 1989.
- [15] J.-P. RAMIS, Multisummability, preprint, 1990.
- [16] J.-P. RAMIS and Y. SIBUYA, Hukuhara domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type, Asymp. Analysis, 2 (1989), 39-94. Zbl0699.34058MR90k:58209
- [17] Y. SIBUYA, Linear differential equations in the complex domain : Problems of analytic continuation, Transl. Math. Monographs, 82, AMS, (1990). Zbl1145.34378
- [18] Y. SIBUYA, Gevrey asymptotics and Stokes multipliers, in Differential Equations and Computer Algebra, Academic Press, 1991, 131-147. Zbl0731.34002MR92j:34012
- [19] H. L. TURRITTIN, Convergent solutions of ordinary homogeneous differential equations in the neighborhood of a singular point, Acta Math., 93 (1955), 27-66. Zbl0064.33603MR16,925a
- [20] W. WASOW, Asymptotic Expansions of Ordinary Differential Equations, Dover, 1976. Zbl0369.34023
Citations in EuDML Documents
top- Jean Ecalle, Bruno Vallet, The arborification-coarborification transform : analytic, combinatorial, and algebraic aspects
- Maria Ewa Pliś, Bogdan Ziemian, Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables
- Bernard Malgrange, Jean-Pierre Ramis, Fonctions multisommables
- Boele L. J. Braaksma, Bernard F. Faber, Multisummability for some classes of difference equations
- Jean-Pierre Ramis, Yasutaka Sibuya, A new proof of multisummability of formal solutions of non linear meromorphic differential equations
- Grzegorz Łysik, Laplace integrals in partial differential equations in papers of Bogdan Ziemian
- Zhuangchu Luo, Hua Chen, Changgui Zhang, Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations
- Geertrui Klara Immink, Accelero-summation of the formal solutions of nonlinear difference equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.