# The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions

Ya-Guang Wang^{[1]}; Mark Williams^{[2]}

- [1] Department of Mathematics, Shanghai Jiao Tong University 200240 Shanghai, China
- [2] Department of Mathematics, University of North Carolina at Chapel Hill NC 27599, USA

Annales de l’institut Fourier (2012)

- Volume: 62, Issue: 6, page 2257-2314
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topWang, Ya-Guang, and Williams, Mark. "The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions." Annales de l’institut Fourier 62.6 (2012): 2257-2314. <http://eudml.org/doc/251143>.

@article{Wang2012,

abstract = {We study boundary layer solutions of the isentropic, compressible Navier-Stokes equations with Navier-friction boundary conditions when the viscosity constants appearing in the momentum equation are proportional to a small parameter $\epsilon $. These boundary conditions are characteristic for the underlying inviscid problem, the compressible Euler equations.The boundary condition implies that the velocity on the boundary is proportional to the tangential component of the stress. The normal component of velocity is zero on the boundary. We first construct a high-order approximate solution that exhibits a boundary layer. The main contribution to the layer appears in the tangential velocity and is of width $\sqrt\{\epsilon \}$ and amplitude $O(\sqrt\{\epsilon \})$. Next we prove that the approximate solution stays close to the exact Navier-Stokes solution on a fixed time interval independent of $\epsilon $. As an immediate corollary we show that the Navier-Stokes solution converges in $L^\infty $ in the small viscosity limit to the solution of the compressible Euler equations with normal velocity equal to zero on the boundary.},

affiliation = {Department of Mathematics, Shanghai Jiao Tong University 200240 Shanghai, China; Department of Mathematics, University of North Carolina at Chapel Hill NC 27599, USA},

author = {Wang, Ya-Guang, Williams, Mark},

journal = {Annales de l’institut Fourier},

keywords = {characteristic boundary layers; compressible Navier-Stokes equations; Navier boundary conditions; inviscid limit},

language = {eng},

number = {6},

pages = {2257-2314},

publisher = {Association des Annales de l’institut Fourier},

title = {The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions},

url = {http://eudml.org/doc/251143},

volume = {62},

year = {2012},

}

TY - JOUR

AU - Wang, Ya-Guang

AU - Williams, Mark

TI - The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions

JO - Annales de l’institut Fourier

PY - 2012

PB - Association des Annales de l’institut Fourier

VL - 62

IS - 6

SP - 2257

EP - 2314

AB - We study boundary layer solutions of the isentropic, compressible Navier-Stokes equations with Navier-friction boundary conditions when the viscosity constants appearing in the momentum equation are proportional to a small parameter $\epsilon $. These boundary conditions are characteristic for the underlying inviscid problem, the compressible Euler equations.The boundary condition implies that the velocity on the boundary is proportional to the tangential component of the stress. The normal component of velocity is zero on the boundary. We first construct a high-order approximate solution that exhibits a boundary layer. The main contribution to the layer appears in the tangential velocity and is of width $\sqrt{\epsilon }$ and amplitude $O(\sqrt{\epsilon })$. Next we prove that the approximate solution stays close to the exact Navier-Stokes solution on a fixed time interval independent of $\epsilon $. As an immediate corollary we show that the Navier-Stokes solution converges in $L^\infty $ in the small viscosity limit to the solution of the compressible Euler equations with normal velocity equal to zero on the boundary.

LA - eng

KW - characteristic boundary layers; compressible Navier-Stokes equations; Navier boundary conditions; inviscid limit

UR - http://eudml.org/doc/251143

ER -

## References

top- T. Clopeau, R. Mikelić, On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions., Nonlinearity 11 (1998), 1625-1636 Zbl0911.76014MR1660366
- E. Feirisl, Dynamics of Viscous Compressible Fluids., (2004), Oxford University Press Zbl1080.76001MR2040667
- D. Gérard-Varet, E. Dormy, On the ill-posedness of the Prandtl equation., Journal A.M.S. 23 (2010), 591-609 Zbl1197.35204MR2601044
- E. Grenier, On the nonlinear instability of Euler and Prandtl equations., Comm. Pure Appl. Math. 53 (2000), 1067-1091 Zbl1048.35081MR1761409
- O. Guès, Problème mixte hyperbolique quasi-linéaire caractéristique., Comm. PDE 15 (1990), 595-645 Zbl0712.35061MR1070840
- O. Guès, G. Métivier, M. Williams, K. Zumbrun, Navier-Stokes regularization of multidimensional Euler shocks., Ann. Sci. École Norm. Sup. 39 (2006), 75-175 Zbl1173.35082MR2224659
- O. Guès, G. Métivier, M. Williams, K. Zumbrun, Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and viscous MHD equations., Arch. Rat. Mech. Analy. 197 (2010), 1-87 Zbl1217.35136MR2646814
- D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data., J. Diff. Eqns. 120 (1995), 215-254 Zbl0836.35120MR1339675
- D. Hoff, Compressible flow in a half-space with Navier boundary conditions, J. Math. Fluid Mech. 7 (2005), 315-338 Zbl1095.35025MR2166979
- D. Iftimie, F. Sueur, Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions, Arch. Rat. Mech. Analy. 199 (2011), 145-175 Zbl1229.35184MR2754340
- J. Kelliher, Navier-stokes equations with Navier boundary conditions for a bounded domain in the plane., SIAM J. Math. Anal. 38 (2006), 201-232 Zbl1302.35295MR2217315
- M. C. Lopes Filho, A. L. Mazzucato, H. J. Nussenzveig Lopes, M. Taylor, Vanishing viscosity limits and boundary layers for circularly symmetric 2d flows., Bull. Braz. Math. Soc. 39 (2008), 471-453 Zbl1178.35288MR2465261
- M. C. Lopes Filho, H. J. Nussenzveig Lopes, G. Planas, On the inviscid limit for two-dimensional incompressible flow with Navier friction condition., SIAM J. Math. Anal. 36 (2005), 1130-1141 Zbl1084.35060MR2139203
- A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases., J. Math. Kyoto Univ. 20 (1980), 67-104 Zbl0429.76040MR564670
- G. Métivier, Uber Flüssigkeitsbewegungen bei sehr kleiner Reibung., Verh. Int. Math. Kongr., Heidelberg 1904 (1905), 484-494, Teubner
- C. L. M. H. Navier, Sur les lois de l’équilibrie et du mouvement des corps élastiques., Mem. Acad. R. Sci. Inst. France 6 (1827)
- O. A. Oleinik, V. N. Samokhin, Mathematical Models in Boundary Layers Theory, (1999), Chapman & Hall/CRC Zbl0928.76002MR1697762
- T. Qian, X. P. Wang, P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows., Physical Review E 68 (2003), 1-15 MR1980479
- M. Sammartino, R. E. Caflisch, Zero viscosity limit or analytic solutions of the Navier-Stokes equations on a half-space, I. Existence for Euler and Prandtl equations., Comm. Math. Phys. 192 (1998), 433-461 Zbl0913.35102MR1617542
- R. Temam, X. Wang, Boundary layers associated with incompressible Navier–Stokes equations: the noncharacteristic boundary case., J. Diff. Eq. 179 (2002), 647-686 Zbl0997.35042MR1885683
- X. P. Wang, Y. G. Wang, Z. P. Xin, Boundary layers in incompressible Navier-Stokes equations with Navier boundary conditions for the vanishing viscosity limit, Comm. Math. Sci. 8 (2010), 965-998 Zbl05843222MR2744916
- Z.P. Xin, T. Yanagisawa, Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane., Comm. Pure Appl. Math. 52 (1999), 479-541 Zbl0922.35116MR1659070

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.