The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions
Ya-Guang Wang[1]; Mark Williams[2]
- [1] Department of Mathematics, Shanghai Jiao Tong University 200240 Shanghai, China
- [2] Department of Mathematics, University of North Carolina at Chapel Hill NC 27599, USA
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 6, page 2257-2314
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- T. Clopeau, R. Mikelić, On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions., Nonlinearity 11 (1998), 1625-1636 Zbl0911.76014MR1660366
- E. Feirisl, Dynamics of Viscous Compressible Fluids., (2004), Oxford University Press Zbl1080.76001MR2040667
- D. Gérard-Varet, E. Dormy, On the ill-posedness of the Prandtl equation., Journal A.M.S. 23 (2010), 591-609 Zbl1197.35204MR2601044
- E. Grenier, On the nonlinear instability of Euler and Prandtl equations., Comm. Pure Appl. Math. 53 (2000), 1067-1091 Zbl1048.35081MR1761409
- O. Guès, Problème mixte hyperbolique quasi-linéaire caractéristique., Comm. PDE 15 (1990), 595-645 Zbl0712.35061MR1070840
- O. Guès, G. Métivier, M. Williams, K. Zumbrun, Navier-Stokes regularization of multidimensional Euler shocks., Ann. Sci. École Norm. Sup. 39 (2006), 75-175 Zbl1173.35082MR2224659
- O. Guès, G. Métivier, M. Williams, K. Zumbrun, Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and viscous MHD equations., Arch. Rat. Mech. Analy. 197 (2010), 1-87 Zbl1217.35136MR2646814
- D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data., J. Diff. Eqns. 120 (1995), 215-254 Zbl0836.35120MR1339675
- D. Hoff, Compressible flow in a half-space with Navier boundary conditions, J. Math. Fluid Mech. 7 (2005), 315-338 Zbl1095.35025MR2166979
- D. Iftimie, F. Sueur, Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions, Arch. Rat. Mech. Analy. 199 (2011), 145-175 Zbl1229.35184MR2754340
- J. Kelliher, Navier-stokes equations with Navier boundary conditions for a bounded domain in the plane., SIAM J. Math. Anal. 38 (2006), 201-232 Zbl1302.35295MR2217315
- M. C. Lopes Filho, A. L. Mazzucato, H. J. Nussenzveig Lopes, M. Taylor, Vanishing viscosity limits and boundary layers for circularly symmetric 2d flows., Bull. Braz. Math. Soc. 39 (2008), 471-453 Zbl1178.35288MR2465261
- M. C. Lopes Filho, H. J. Nussenzveig Lopes, G. Planas, On the inviscid limit for two-dimensional incompressible flow with Navier friction condition., SIAM J. Math. Anal. 36 (2005), 1130-1141 Zbl1084.35060MR2139203
- A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases., J. Math. Kyoto Univ. 20 (1980), 67-104 Zbl0429.76040MR564670
- G. Métivier, Uber Flüssigkeitsbewegungen bei sehr kleiner Reibung., Verh. Int. Math. Kongr., Heidelberg 1904 (1905), 484-494, Teubner
- C. L. M. H. Navier, Sur les lois de l’équilibrie et du mouvement des corps élastiques., Mem. Acad. R. Sci. Inst. France 6 (1827)
- O. A. Oleinik, V. N. Samokhin, Mathematical Models in Boundary Layers Theory, (1999), Chapman & Hall/CRC Zbl0928.76002MR1697762
- T. Qian, X. P. Wang, P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows., Physical Review E 68 (2003), 1-15 MR1980479
- M. Sammartino, R. E. Caflisch, Zero viscosity limit or analytic solutions of the Navier-Stokes equations on a half-space, I. Existence for Euler and Prandtl equations., Comm. Math. Phys. 192 (1998), 433-461 Zbl0913.35102MR1617542
- R. Temam, X. Wang, Boundary layers associated with incompressible Navier–Stokes equations: the noncharacteristic boundary case., J. Diff. Eq. 179 (2002), 647-686 Zbl0997.35042MR1885683
- X. P. Wang, Y. G. Wang, Z. P. Xin, Boundary layers in incompressible Navier-Stokes equations with Navier boundary conditions for the vanishing viscosity limit, Comm. Math. Sci. 8 (2010), 965-998 Zbl05843222MR2744916
- Z.P. Xin, T. Yanagisawa, Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane., Comm. Pure Appl. Math. 52 (1999), 479-541 Zbl0922.35116MR1659070