Page 1

Displaying 1 – 14 of 14

Showing per page

A zoology of boundary layers.

David Gérard-Varet, Emmanuel Grenier (2002)

RACSAM

In meteorology and magnetohydrodynamics many different boundary layers appear. Some of them are already mathematically well known, like Ekman or Hartmann layers. Others remain unstudied, and can be much more complex. The aim of this paper is to give a simple and unified presentation of the main boundary layers, and to propose a simple method to derive their sizes and equations.

Mathematical analysis of the discharge of a laminar hot gas in a colder atmosphere.

Stanislav Antontsev, Jesús Ildefonso Díaz (2007)

RACSAM

We study the boundary layer approximation of the, already classical, mathematical model which describes the discharge of a laminar hot gas in a stagnant colder atmosphere of the same gas. We start by proving the existence and uniqueness of solutions of the nondegenerate problem under assumptions implying that the temperature T and the horizontal velocity u of the gas are strictly positive: T ≥ δ > 0 and u ≥ ε > 0 (here δ and ε are given as boundary conditions in the external atmosphere)....

Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries II

David Gérard-Varet, Daniel Han-Kwan, Frédéric Rousset (2014)

Journal de l’École polytechnique — Mathématiques

In this paper, we study the quasineutral limit of the isothermal Euler-Poisson equation for ions, in a domain with boundary. This is a follow-up to our previous work [5], devoted to no-penetration as well as subsonic outflow boundary conditions. We focus here on the case of supersonic outflow velocities. The structure of the boundary layers and the stabilization mechanism are different.

The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions

Ya-Guang Wang, Mark Williams (2012)

Annales de l’institut Fourier

We study boundary layer solutions of the isentropic, compressible Navier-Stokes equations with Navier-friction boundary conditions when the viscosity constants appearing in the momentum equation are proportional to a small parameter ϵ . These boundary conditions are characteristic for the underlying inviscid problem, the compressible Euler equations.The boundary condition implies that the velocity on the boundary is proportional to the tangential component of the stress. The normal component of velocity...

Currently displaying 1 – 14 of 14

Page 1