Spectral invariants for coupled spin-oscillators
San Vũ Ngọc[1]
- [1] IRMAR (UMR 6625) Université de Rennes 1 Campus de Beaulieu 35042 Rennes cedex France
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-18
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topReferences
top- O. Babelon, L. Cantini, and B. Douçot. A semi-classical study of the Jaynes-Cummings model. J. Stat. Mech. Theory Exp., (7):P07011, 45, 2009. MR2539236
- L. Charles. Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators. Comm. Partial Differential Equations, 28(9-10), 2003. Zbl1038.53086MR2001172
- Y. Colin de Verdière. A semi-classical inverse problem II: reconstruction of the potential. oai:hal.archives-ouvertes.fr:hal-00251590_v1 .
- Y. Colin de Verdière. Spectre conjoint d’opérateurs pseudo-différentiels qui commutent II. Math. Z., 171:51–73, 1980. Zbl0478.35073MR566483
- Y. Colin de Verdière and V. Guillemin. Semi-classical inverse problem I: Taylor expansions. preprint, hal-00250568. Zbl1258.34036
- R. Cushman and J. J. Duistermaat. The quantum spherical pendulum. Bull. Amer. Math. Soc. (N.S.), 19:475–479, 1988. Zbl0658.58039MR956603
- J.-P. Dufour, P. Molino, and A. Toulet. Classification des systèmes intégrables en dimension 2 et invariants des modèles de Fomenko. C. R. Acad. Sci. Paris Sér. I Math., 318:949–952, 1994. Zbl0808.58025MR1278158
- J. J. Duistermaat. On global action-angle variables. Comm. Pure Appl. Math., 33:687–706, 1980. Zbl0439.58014MR596430
- H. R. Dullin. Semi-global symplectic invariants of the spherical pendulum. preprint arXiv:1108.4962. Zbl1266.37024MR3017036
- C. Gordon, D. Webb, and S. Wolpert. Isospectral plane domains and surfaces via riemannian orbifolds. Invent. Math., 110(1):1–22, 1992. Zbl0778.58068MR1181812
- V. Guillemin, T. Paul, and A. Uribe. “Bottom of the well” semi-classical trace invariants. Math. Res. Lett., 14(4):711–719, 2007. Zbl1140.58007MR2335997
- H. Hezari. Inverse spectral problems for Schrödinger operators. Comm. Math. Phys., 288(3):1061–1088, 2009. Zbl1170.81042MR2504865
- A. Iantchenko, J. Sjöstrand, and M. Zworski. Birkhoff normal forms in semi-classical inverse problems. Math. Res. Lett., 9(2-3):337–362, 2002. Zbl1258.35208MR1909649
- M. Kac. Can one hear the shape of a drum ? The American Math. Monthly, 73(4):1–23, 1966. Zbl0139.05603MR201237
- J. Milnor. Eigenvalues of the laplace operator on certain manifolds. Proc. Natl. Acad. Sci. USA, 51:542, 1964. Zbl0124.31202MR162204
- Ã. Pelayo and S. Vũ Ngọc. First steps in a symplectic and spectral theory of integrable systems. in preparation. Zbl1257.37038
- Ã. Pelayo and S. Vũ Ngọc. Semitoric integrable systems on symplectic 4-manifolds. Invent. Math., 177(3):571–597, 2009. Zbl1215.53071MR2534101
- Ã. Pelayo and S. Vũ Ngọc. Hamiltonian dynamics and spectral theory for spin-oscillators. arXiv:1005.0439, to appear in Comm. Math. Phys., 2010. Zbl1263.70022MR2864789
- Ã. Pelayo and S. Vũ Ngọc. Constructing integrable systems of semitoric type. Acta Math., 206:93–125, 2011. Zbl1225.53074MR2784664
- Ã. Pelayo and S. Vũ Ngọc. Symplectic theory of completely integrable hamiltonian systems. to appear in Bull. AMS., 2011. Zbl1230.37075MR2801777
- D.A. Sadovskií and B.I. Zhilinskií. Monodromy, diabolic points, and angular momentum coupling. Phys. Lett. A, 256(4):235–244, 1999. Zbl0934.81005MR1689376
- S. Vũ Ngọc. Symplectic inverse spectral theory for pseudodifferential operators. HAL preprint, June 2008. To appear in a Volume dedicated to Hans Duistermaat. Zbl1277.47065MR2809478
- S. Vũ Ngọc. Quantum monodromy in integrable systems. Commun. Math. Phys., 203(2):465–479, 1999. Zbl0981.35015MR1697606
- S. Vũ Ngọc. Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type. Comm. Pure Appl. Math., 53(2):143–217, 2000. Zbl1027.81012MR1721373
- S. Vũ Ngọc. On semi-global invariants for focus-focus singularities. Topology, 42(2):365–380, 2003. Zbl1012.37041MR1941440
- S. Vũ Ngọc and Ch. Wacheux. Normal forms for hamiltonian systems near a focus-focus singularity. Preprint hal-00577205, 2010. Zbl1303.37018
- S. Zelditch. The inverse spectral problem. In Surveys in differential geometry. Vol. IX, Surv. Differ. Geom., IX, pages 401–467. Int. Press, Somerville, MA, 2004. With an appendix by Johannes Sjöstrand and Maciej Zworski. Zbl1061.58029MR2195415
- S. Zelditch. Inverse spectral problem for analytic domains. I: Balian-bloch trace formula. Commun. Math. Phys., 248(2):357–407, 2004. Zbl1086.58016MR2073139
- S. Zelditch. Inverse spectral problem for analytic domains. II. -symmetric domains. Ann. of Math. (2), 170(1):205–269, 2009. Zbl1196.58016MR2521115