Blow up and near soliton dynamics for the L 2 critical gKdV equation

Yvan Martel[1]; Frank Merle[2]; Pierre Raphaël[3]

  • [1] Université de Versailles St-Quentin and Institut Universitaire de France LMV CNRS UMR8100
  • [2] Université de Cergy Pontoise and Institut des Hautes Études Scientifiques, AGM CNRS UMR8088
  • [3] Université Paul Sabatier and Institut Universitaire de France, IMT CNRS UMR 5219

Séminaire Laurent Schwartz — EDP et applications (2011-2012)

  • Volume: 2011-2012, page 1-14
  • ISSN: 2266-0607

Abstract

top
These notes present the main results of [22, 23, 24] concerning the mass critical (gKdV) equation u t + ( u x x + u 5 ) x = 0 for initial data in H 1 close to the soliton. These works revisit the blow up phenomenon close to the family of solitons in several directions: definition of the stable blow up and classification of all possible behaviors in a suitable functional setting, description of the minimal mass blow up in H 1 , construction of various exotic blow up rates in H 1 , including grow up in infinite time.

How to cite

top

Martel, Yvan, Merle, Frank, and Raphaël, Pierre. "Blow up and near soliton dynamics for the $L^2$ critical gKdV equation." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-14. <http://eudml.org/doc/251172>.

@article{Martel2011-2012,
abstract = {These notes present the main results of [22, 23, 24] concerning the mass critical (gKdV) equation $u_t + (u_\{xx\} + u^5)_x =0$ for initial data in $H^1$ close to the soliton. These works revisit the blow up phenomenon close to the family of solitons in several directions: definition of the stable blow up and classification of all possible behaviors in a suitable functional setting, description of the minimal mass blow up in $H^1$, construction of various exotic blow up rates in $H^1$, including grow up in infinite time.},
affiliation = {Université de Versailles St-Quentin and Institut Universitaire de France LMV CNRS UMR8100; Université de Cergy Pontoise and Institut des Hautes Études Scientifiques, AGM CNRS UMR8088; Université Paul Sabatier and Institut Universitaire de France, IMT CNRS UMR 5219},
author = {Martel, Yvan, Merle, Frank, Raphaël, Pierre},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {blow up},
language = {eng},
pages = {1-14},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Blow up and near soliton dynamics for the $L^2$ critical gKdV equation},
url = {http://eudml.org/doc/251172},
volume = {2011-2012},
year = {2011-2012},
}

TY - JOUR
AU - Martel, Yvan
AU - Merle, Frank
AU - Raphaël, Pierre
TI - Blow up and near soliton dynamics for the $L^2$ critical gKdV equation
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 14
AB - These notes present the main results of [22, 23, 24] concerning the mass critical (gKdV) equation $u_t + (u_{xx} + u^5)_x =0$ for initial data in $H^1$ close to the soliton. These works revisit the blow up phenomenon close to the family of solitons in several directions: definition of the stable blow up and classification of all possible behaviors in a suitable functional setting, description of the minimal mass blow up in $H^1$, construction of various exotic blow up rates in $H^1$, including grow up in infinite time.
LA - eng
KW - blow up
UR - http://eudml.org/doc/251172
ER -

References

top
  1. Berestycki, H.; Cazenave, T., Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. (French. English summary) [Instability of stationary states in nonlinear Schrödinger and Klein-Gordon equations] C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 9, 489–492. Zbl0492.35010MR646873
  2. J. Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 197–215 (1998). Zbl1043.35137MR1655515
  3. Donninger, R.; Krieger, J., Nonscattering solutions and blowup at infinity for the critical wave equation, preprint, arXiv:1201.3258 Zbl1280.35135
  4. T. Duyckaerts, F. Merle, Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP 2007, Art. ID rpn002, 67 pp. (2008). Zbl1159.35043MR2470571
  5. T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal. 18 (2009), 1787–1840. Zbl1232.35150MR2491692
  6. G. Fibich, F. Merle and P. Raphaël, Proof of a spectral property related to the singularity formation for the L2 critical nonlinear Schrödinger equation. Phys. D 220 (2006), 1–13. Zbl1100.35097MR2252148
  7. S. Gustafson, K. Nakanishi and T.-P. Tsai, Asymptotic stability, concentration and oscillations in harmonic map heat flow, Landau Lifschitz and Schrödinger maps on 2 , Comm. Math. Phys. 300 (2010), 205-242. Zbl1205.35294MR2725187
  8. T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies in applied mathematics, 93–128, Adv. Math. Suppl. Stud., 8, Academic Press, New York, 1983. Zbl0549.34001MR759907
  9. C.E. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, nonlinear Schrödinger equation in the radial case. Invent. Math. 166 (2006) 645–675. Zbl1115.35125MR2257393
  10. C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46, (1993) 527–620. Zbl0808.35128MR1211741
  11. C.E. Kenig, G. Ponce and L. Vega, On the concentration of blow up solutions for the generalized KdV equation critical in L 2 . Nonlinear wave equations (Providence, RI, 1998), 131–156, Contemp. Math., 263, Amer. Math. Soc., Providence, RI, 2000. Zbl0970.35125MR1777639
  12. R. Killip, S. Kwon, S. Shao, M. Visan, On the mass-critical generalized KdV equation. Discrete Contin. Dyn. Syst. 32 (2012), 191–221. Zbl1234.35226MR2837059
  13. J. Krieger, K. Nakanishi and W. Schlag, Global dynamics away from the ground state for the energy-critical nonlinear wave equation, arXiv:1010.3799. Zbl1307.35170
  14. J. Krieger and W. Schlag, Non-generic blow-up solutions for the critical focusing NLS in 1-D, J. Eur. Math. Soc. (JEMS) 11 (2009), 1–125. Zbl1163.35035MR2471133
  15. J. Krieger, W. Schlag and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171 (2008), 543–615. Zbl1139.35021MR2372807
  16. J. Krieger, W. Schlag and D. Tataru, Slow blow-up solutions for the H 1 ( 3 ) critical focusing semilinear wave equation, Duke Math. J. 147 (2009), 1–53. Zbl1170.35066MR2494455
  17. Y. Martel and F. Merle, A Liouville theorem for the critical generalized Korteweg–de Vries equation, J. Math. Pures Appl. 79 (2000), 339–425. Zbl0963.37058MR1753061
  18. Y. Martel and F. Merle, Instability of solitons for the critical generalized Korteweg-de Vries equation. Geom. Funct. Anal. 11 (2001), 74–123. Zbl0985.35071MR1829643
  19. Y. Martel and F. Merle, Stability of blow up profile and lower bounds for blow up rate for the critical generalized KdV equation, Ann. of Math. 155 (2002), 235–280. Zbl1005.35081MR1888800
  20. Y. Martel and F. Merle, Blow up in finite time and dynamics of blow up solutions for the L 2 -critical generalized KdV equation, J. Amer. Math. Soc. 15 (2002), 617–664. Zbl0996.35064MR1896235
  21. Y. Martel and F. Merle, Frank Nonexistence of blow-up solution with minimal L 2 -mass for the critical gKdV equation. Duke Math. J. 115 (2002), 385–408. Zbl1033.35102MR1944576
  22. Y. Martel, F. Merle and P. Raphaël, Blow up for the critical gKdV equation I: dynamics near the soliton. Preprint. Zbl1319.35224
  23. Y. Martel, F. Merle and P. Raphaël, Blow up for the critical gKdV equation II: minimal mass solution. Preprint. Zbl1326.35320
  24. Y. Martel, F. Merle and P. Raphaël, Blow up for the critical gKdV equation III: exotic blow up rates. Preprint. Zbl1331.35307
  25. F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69 (1993), 427–454. Zbl0808.35141MR1203233
  26. F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation. J. Amer. Math. Soc. 14 (2001), 555–578. Zbl0970.35128MR1824989
  27. F. Merle and P. Raphaël, Sharp upper bound on the blow up rate for the critical nonlinear Schrödinger equation, Geom. Func. Anal. 13 (2003), 591–642. Zbl1061.35135MR1995801
  28. F. Merle and P. Raphaël, On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation. Invent. Math. 156 (2004), 565–672. Zbl1067.35110MR2061329
  29. F. Merle and P. Raphaël, The blow up dynamics and upper bound on the blow up rate for the critical nonlinear Schrödinger equation, Ann. of Math. 161 (2005), 157–222. Zbl1185.35263MR2150386
  30. F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Commun. Math. Phys. 253 (2005), 675–704. Zbl1062.35137MR2116733
  31. F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the L 2 critical nonlinear Schrödinger equation. J. Amer. Math. Soc. 19 (2006), 37–90. Zbl1075.35077MR2169042
  32. F. Merle, P. Raphaël and J. Szeftel, The instability of Bourgain-Wang solutions for the L 2 critical NLS, to appear in Amer. Math. Jour., preprint arXiv:1010.5168. Zbl1294.35145
  33. F. Merle, P. Raphaël and I. Rodnianski, Blow up dynamics for smooth data equivariant solutions to the energy critical Schrodinger map problem. preprint arXiv:1102.4308 
  34. K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation, J. Differential Equations 250 (2011), 2299–2333. Zbl1213.35307MR2756065
  35. K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in 3D, arXiv:1007.4025. Zbl1237.35148MR2898769
  36. P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation. Math. Ann. 331 (2005), 577–609. Zbl1082.35143MR2122541
  37. P. Raphaël, Stability and blow up for the nonlinear Schrodinger equation, Lecture notes for the Clay summer school on evolution equations, ETH, Zurich (2008), http://www.math.univ-toulouse.fr/ raphael/Teaching.html 
  38. P. Raphaël and I. Rodnianski, Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills problems. To appear in Publications scientifiques de l’IHES. arXiv:0911.0692 Zbl1284.35358MR2929728
  39. P. Raphaël and R. Schweyer, Stable blow up dynamics for the 1-corotational harmonic heat flow, to appear in Comm. Pure App. Math. Zbl1327.35196
  40. P. Raphaël and J. Szeftel, Existence and uniqueness of minimal blow up solutions to an inhomogeneous mass critical NLS. To appear in J. Amer. Math. Soc. 23 (2011). Preprint arXiv:1001.1627 Zbl1218.35226MR2748399
  41. M. J. Landman, G. C. Papanicolaou, C. Sulem and P.-L. Sulem, Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. Phys. Rev. A (3) 38 (1988), 3837–3843. MR966356
  42. G. Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré 2 (2001), 605–673. Zbl1007.35087MR1852922
  43. I. Rodnianski, J. Sterbenz, On the formation of singularities in the critical O ( 3 ) σ -model, Ann. of Math. (2) 172 (2010), 187–242. Zbl1213.35392MR2680419
  44. S. Shao, The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy Strichartz inequality. Anal. PDE 2 (2009), 83–117. Zbl1185.35239MR2561172
  45. M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567–576. Zbl0527.35023MR691044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.