Blow up and near soliton dynamics for the critical gKdV equation
Yvan Martel[1]; Frank Merle[2]; Pierre Raphaël[3]
- [1] Université de Versailles St-Quentin and Institut Universitaire de France LMV CNRS UMR8100
- [2] Université de Cergy Pontoise and Institut des Hautes Études Scientifiques, AGM CNRS UMR8088
- [3] Université Paul Sabatier and Institut Universitaire de France, IMT CNRS UMR 5219
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-14
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topMartel, Yvan, Merle, Frank, and Raphaël, Pierre. "Blow up and near soliton dynamics for the $L^2$ critical gKdV equation." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-14. <http://eudml.org/doc/251172>.
@article{Martel2011-2012,
abstract = {These notes present the main results of [22, 23, 24] concerning the mass critical (gKdV) equation $u_t + (u_\{xx\} + u^5)_x =0$ for initial data in $H^1$ close to the soliton. These works revisit the blow up phenomenon close to the family of solitons in several directions: definition of the stable blow up and classification of all possible behaviors in a suitable functional setting, description of the minimal mass blow up in $H^1$, construction of various exotic blow up rates in $H^1$, including grow up in infinite time.},
affiliation = {Université de Versailles St-Quentin and Institut Universitaire de France LMV CNRS UMR8100; Université de Cergy Pontoise and Institut des Hautes Études Scientifiques, AGM CNRS UMR8088; Université Paul Sabatier and Institut Universitaire de France, IMT CNRS UMR 5219},
author = {Martel, Yvan, Merle, Frank, Raphaël, Pierre},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {blow up},
language = {eng},
pages = {1-14},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Blow up and near soliton dynamics for the $L^2$ critical gKdV equation},
url = {http://eudml.org/doc/251172},
volume = {2011-2012},
year = {2011-2012},
}
TY - JOUR
AU - Martel, Yvan
AU - Merle, Frank
AU - Raphaël, Pierre
TI - Blow up and near soliton dynamics for the $L^2$ critical gKdV equation
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 14
AB - These notes present the main results of [22, 23, 24] concerning the mass critical (gKdV) equation $u_t + (u_{xx} + u^5)_x =0$ for initial data in $H^1$ close to the soliton. These works revisit the blow up phenomenon close to the family of solitons in several directions: definition of the stable blow up and classification of all possible behaviors in a suitable functional setting, description of the minimal mass blow up in $H^1$, construction of various exotic blow up rates in $H^1$, including grow up in infinite time.
LA - eng
KW - blow up
UR - http://eudml.org/doc/251172
ER -
References
top- Berestycki, H.; Cazenave, T., Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. (French. English summary) [Instability of stationary states in nonlinear Schrödinger and Klein-Gordon equations] C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 9, 489–492. Zbl0492.35010MR646873
- J. Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 197–215 (1998). Zbl1043.35137MR1655515
- Donninger, R.; Krieger, J., Nonscattering solutions and blowup at infinity for the critical wave equation, preprint, arXiv:1201.3258 Zbl1280.35135
- T. Duyckaerts, F. Merle, Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP 2007, Art. ID rpn002, 67 pp. (2008). Zbl1159.35043MR2470571
- T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal. 18 (2009), 1787–1840. Zbl1232.35150MR2491692
- G. Fibich, F. Merle and P. Raphaël, Proof of a spectral property related to the singularity formation for the L2 critical nonlinear Schrödinger equation. Phys. D 220 (2006), 1–13. Zbl1100.35097MR2252148
- S. Gustafson, K. Nakanishi and T.-P. Tsai, Asymptotic stability, concentration and oscillations in harmonic map heat flow, Landau Lifschitz and Schrödinger maps on , Comm. Math. Phys. 300 (2010), 205-242. Zbl1205.35294MR2725187
- T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies in applied mathematics, 93–128, Adv. Math. Suppl. Stud., 8, Academic Press, New York, 1983. Zbl0549.34001MR759907
- C.E. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, nonlinear Schrödinger equation in the radial case. Invent. Math. 166 (2006) 645–675. Zbl1115.35125MR2257393
- C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46, (1993) 527–620. Zbl0808.35128MR1211741
- C.E. Kenig, G. Ponce and L. Vega, On the concentration of blow up solutions for the generalized KdV equation critical in . Nonlinear wave equations (Providence, RI, 1998), 131–156, Contemp. Math., 263, Amer. Math. Soc., Providence, RI, 2000. Zbl0970.35125MR1777639
- R. Killip, S. Kwon, S. Shao, M. Visan, On the mass-critical generalized KdV equation. Discrete Contin. Dyn. Syst. 32 (2012), 191–221. Zbl1234.35226MR2837059
- J. Krieger, K. Nakanishi and W. Schlag, Global dynamics away from the ground state for the energy-critical nonlinear wave equation, arXiv:1010.3799. Zbl1307.35170
- J. Krieger and W. Schlag, Non-generic blow-up solutions for the critical focusing NLS in 1-D, J. Eur. Math. Soc. (JEMS) 11 (2009), 1–125. Zbl1163.35035MR2471133
- J. Krieger, W. Schlag and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171 (2008), 543–615. Zbl1139.35021MR2372807
- J. Krieger, W. Schlag and D. Tataru, Slow blow-up solutions for the critical focusing semilinear wave equation, Duke Math. J. 147 (2009), 1–53. Zbl1170.35066MR2494455
- Y. Martel and F. Merle, A Liouville theorem for the critical generalized Korteweg–de Vries equation, J. Math. Pures Appl. 79 (2000), 339–425. Zbl0963.37058MR1753061
- Y. Martel and F. Merle, Instability of solitons for the critical generalized Korteweg-de Vries equation. Geom. Funct. Anal. 11 (2001), 74–123. Zbl0985.35071MR1829643
- Y. Martel and F. Merle, Stability of blow up profile and lower bounds for blow up rate for the critical generalized KdV equation, Ann. of Math. 155 (2002), 235–280. Zbl1005.35081MR1888800
- Y. Martel and F. Merle, Blow up in finite time and dynamics of blow up solutions for the -critical generalized KdV equation, J. Amer. Math. Soc. 15 (2002), 617–664. Zbl0996.35064MR1896235
- Y. Martel and F. Merle, Frank Nonexistence of blow-up solution with minimal -mass for the critical gKdV equation. Duke Math. J. 115 (2002), 385–408. Zbl1033.35102MR1944576
- Y. Martel, F. Merle and P. Raphaël, Blow up for the critical gKdV equation I: dynamics near the soliton. Preprint. Zbl1319.35224
- Y. Martel, F. Merle and P. Raphaël, Blow up for the critical gKdV equation II: minimal mass solution. Preprint. Zbl1326.35320
- Y. Martel, F. Merle and P. Raphaël, Blow up for the critical gKdV equation III: exotic blow up rates. Preprint. Zbl1331.35307
- F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69 (1993), 427–454. Zbl0808.35141MR1203233
- F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation. J. Amer. Math. Soc. 14 (2001), 555–578. Zbl0970.35128MR1824989
- F. Merle and P. Raphaël, Sharp upper bound on the blow up rate for the critical nonlinear Schrödinger equation, Geom. Func. Anal. 13 (2003), 591–642. Zbl1061.35135MR1995801
- F. Merle and P. Raphaël, On universality of blow-up profile for critical nonlinear Schrödinger equation. Invent. Math. 156 (2004), 565–672. Zbl1067.35110MR2061329
- F. Merle and P. Raphaël, The blow up dynamics and upper bound on the blow up rate for the critical nonlinear Schrödinger equation, Ann. of Math. 161 (2005), 157–222. Zbl1185.35263MR2150386
- F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Commun. Math. Phys. 253 (2005), 675–704. Zbl1062.35137MR2116733
- F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the critical nonlinear Schrödinger equation. J. Amer. Math. Soc. 19 (2006), 37–90. Zbl1075.35077MR2169042
- F. Merle, P. Raphaël and J. Szeftel, The instability of Bourgain-Wang solutions for the critical NLS, to appear in Amer. Math. Jour., preprint arXiv:1010.5168. Zbl1294.35145
- F. Merle, P. Raphaël and I. Rodnianski, Blow up dynamics for smooth data equivariant solutions to the energy critical Schrodinger map problem. preprint arXiv:1102.4308
- K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation, J. Differential Equations 250 (2011), 2299–2333. Zbl1213.35307MR2756065
- K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in 3D, arXiv:1007.4025. Zbl1237.35148MR2898769
- P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation. Math. Ann. 331 (2005), 577–609. Zbl1082.35143MR2122541
- P. Raphaël, Stability and blow up for the nonlinear Schrodinger equation, Lecture notes for the Clay summer school on evolution equations, ETH, Zurich (2008), http://www.math.univ-toulouse.fr/ raphael/Teaching.html
- P. Raphaël and I. Rodnianski, Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills problems. To appear in Publications scientifiques de l’IHES. arXiv:0911.0692 Zbl1284.35358MR2929728
- P. Raphaël and R. Schweyer, Stable blow up dynamics for the 1-corotational harmonic heat flow, to appear in Comm. Pure App. Math. Zbl1327.35196
- P. Raphaël and J. Szeftel, Existence and uniqueness of minimal blow up solutions to an inhomogeneous mass critical NLS. To appear in J. Amer. Math. Soc. 23 (2011). Preprint arXiv:1001.1627 Zbl1218.35226MR2748399
- M. J. Landman, G. C. Papanicolaou, C. Sulem and P.-L. Sulem, Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. Phys. Rev. A (3) 38 (1988), 3837–3843. MR966356
- G. Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré 2 (2001), 605–673. Zbl1007.35087MR1852922
- I. Rodnianski, J. Sterbenz, On the formation of singularities in the critical -model, Ann. of Math. (2) 172 (2010), 187–242. Zbl1213.35392MR2680419
- S. Shao, The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy Strichartz inequality. Anal. PDE 2 (2009), 83–117. Zbl1185.35239MR2561172
- M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567–576. Zbl0527.35023MR691044
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.