Results on qualitative features of periodic solutions of KdV
T. Kappeler; B. Schaad; P. Topalov
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-7
- ISSN: 2266-0607
Access Full Article
topHow to cite
topReferences
top- M. Erdogan, N. Tzirakis, V. Zharnitsky : Near-linear dynamics in KdV with periodic boundary conditions, Nonlinearity 23 (2010), 1675-1694. Zbl1195.35259MR2652476
- B. Grébert, T. Kappeler, J. Pöschel: Normal form theory of the NLS equation, preliminary version, arxiv.org/abs/0907.3938v1 2009. To appear in EMS Series of Lectures in Mathematics, EMS Publishing House.
- A. Its, V. Matveev : A class of solutions of the Korteweg-de Vries equation(in Russian), Problems in Math. Physics N08, Izdat. Leningrad Univ., Leningrad, 1976 , 79-92. MR516298
- T. Kappeler: Fibration of the phase-space for the Korteweg-de Vries equation, Ann. Inst. Fourier 41 (1991), 539-575. Zbl0731.58033MR1136595
- T. Kappeler, M. Makarov: On action-angle variables for the second Poisson bracket, Comm. in Math. Phys., 214, 3 (2000), 651-677. Zbl1003.37038MR1800865
- T. Kappeler, M. Makarov: On Birkhoff coordinates for KdV, Ann. H. Poincaré 2 (2001), 807 - 856. Zbl1017.76015MR1869523
- T. Kappeler, J. Pöschel: KdV & KAM, Ergebnisse Math. u. Grenzgebiete, Springer, Berlin, 2003. MR1997070
- T. Kappeler, B. Schaad, P. Topalov: mKdV and its Birkhoff coordinates, Physica D: Nonlinear Phenomena, 237, 10-12 (2008), 1655-1662. Zbl1143.76400MR2454610
- T. Kappeler, B. Schaad, P. Topalov: Asymptotic estimates of spectral quantities of Schrödinger operators, arXiv: 1107.4542. Zbl1317.81119
- T. Kappeler, B. Schaad, P. Topalov: Qualitative features of periodic solutions of KdV, arXiv: 1110.0455. Zbl1274.35330
- T. Kappeler, P. Topalov: Global fold structure of the Miura map on , Int. Math. Research Notices (2004), 2039-2068. Zbl1076.35111MR2062735
- T. Kappeler, P. Topalov: Global wellposedness of KdV in , Duke Math. J. 135 (2006), 327-360. Zbl1106.35081MR2267286
- S. Kuksin: Damped driven KdV and effective equation for long-time behaviour of its solution, preliminary version, 2009. MR2738999
- S. Kuksin, G. Perelman: Vey theorem in infinite dimensions and its application to KdV, Discrete and Continuous Dynamical Systems Ser. A, 27, no 1, (2010), 1-24. Zbl1193.37076MR2600759
- S. Kuksin, A. Piatnitski: Khasminskii - Whitham averaging for randomly perturbated KdV equation, J. Math. Pures Appl. 89 (2008), 400-428. Zbl1148.35077MR2401144
- V. Marchenko: Sturm-Liouville operators and applications, Birkhäuser, Basel, 1986. Zbl0592.34011MR897106
- H. McKean, E. Vaninsky: Action-angle variables for the cubic Schroedinger equation, Comm. Pure Appl. Math. 50 (1997), 489-562. Zbl0990.35047MR1441912
- A. Savchuk, A. Shkalikov: On the eigenvalues of the Sturm-Liouville operator with potentials from Sobolev spaces, Math. Notes 80, no 6 (2006), 864-884. Zbl1129.34055MR2311614
- B. Schaad: Qualitative features of periodic solutions of KdV, PhD thesis, University of Zurich, 2011. Zbl1274.35330