Fibration of the phase space for the Korteweg-de Vries equation

Thomas Kappeler

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 3, page 539-575
  • ISSN: 0373-0956

Abstract

top
In this article we prove that the fibration of L 2 ( S 1 ) by potentials which are isospectral for the 1-dimensional periodic Schrödinger equation, is trivial. This result can be applied, in particular, to N -gap solutions of the Korteweg-de Vries equation (KdV) on the circle: one shows that KdV, a completely integrable Hamiltonian system, has global action-angle variables.

How to cite

top

Kappeler, Thomas. "Fibration of the phase space for the Korteweg-de Vries equation." Annales de l'institut Fourier 41.3 (1991): 539-575. <http://eudml.org/doc/74929>.

@article{Kappeler1991,
abstract = {In this article we prove that the fibration of $L^ 2(S^ 1)$ by potentials which are isospectral for the 1-dimensional periodic Schrödinger equation, is trivial. This result can be applied, in particular, to $N$-gap solutions of the Korteweg-de Vries equation (KdV) on the circle: one shows that KdV, a completely integrable Hamiltonian system, has global action-angle variables.},
author = {Kappeler, Thomas},
journal = {Annales de l'institut Fourier},
keywords = {isospectral potentials; Schrödinger equation; Korteweg-de Vries equation; completely integrable Hamiltonian system; global action-angle variables},
language = {eng},
number = {3},
pages = {539-575},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fibration of the phase space for the Korteweg-de Vries equation},
url = {http://eudml.org/doc/74929},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Kappeler, Thomas
TI - Fibration of the phase space for the Korteweg-de Vries equation
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 3
SP - 539
EP - 575
AB - In this article we prove that the fibration of $L^ 2(S^ 1)$ by potentials which are isospectral for the 1-dimensional periodic Schrödinger equation, is trivial. This result can be applied, in particular, to $N$-gap solutions of the Korteweg-de Vries equation (KdV) on the circle: one shows that KdV, a completely integrable Hamiltonian system, has global action-angle variables.
LA - eng
KW - isospectral potentials; Schrödinger equation; Korteweg-de Vries equation; completely integrable Hamiltonian system; global action-angle variables
UR - http://eudml.org/doc/74929
ER -

References

top
  1. [CL] E.A. CODDINGTON, N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. Zbl0064.33002MR16,1022b
  2. [DU] J.J. DUISTERMAAT, On global action-angle coordinates, C.P.A.M., 33 (1980), 687-706. Zbl0439.58014MR82d:58029
  3. [FIT] A. FINKEL, E. ISAACSON, E. TRUBOWITZ, An explicit solution of the inverse problem for Hill's equation, SIAM J. Math. Anal., 18 (1987), 46-53. Zbl0622.34021MR88d:34037
  4. [GT1] J. GARNETT, E. TRUBOWITZ, Gaps and bands of one dimensional periodic Schrödinger operators, Comm. Math. Helv., 59 (1984), 258-312. Zbl0554.34013MR85i:34004
  5. [GT2] J. GARNETT, E. TRUBOWITZ, Gaps and bands of one dimensional periodic Schrödinger operators II, Comm. Math. Helv., 62 (1987), 18-37. Zbl0649.34034MR88g:34028
  6. [GK] I.C. GOHBERG, M.G. KREIN, Introduction to the Theory of Linear Non Selfadjoint Operators, Transl. of Math Monogr., vol. 18, AMS, Providence, 1969. Zbl0181.13504MR39 #7447
  7. [Ka] T. KATO, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, 1976. Zbl0342.47009MR53 #11389
  8. [Kp] T. KAPPELER, On the periodic spectrum of the 1-dimensional Schrödinger operator, Comm. Math. Helv., 65 (1990), 1-3. Zbl0703.34085MR91a:34059
  9. [Ma] V.A. MARCENKO, Sturm Liouville Operators and Applications, Birkäuser, Basel, 1986. Zbl0592.34011
  10. [MM] H.P. MCKEAN, P. VAN MOERBEKE, The spectrum of Hill's equation, Inv. Math., 30 (1975), 217-274. Zbl0319.34024MR53 #936
  11. [MW] W. MAGNUS, W. WINKLER, Hill's Equation, Wiley-Interscience, New York, 1986. 
  12. [MT] H.P. MICKEAN, E. TRUBOWITZ, Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, CPAM, 24 (1976), 143-226. Zbl0339.34024MR55 #761
  13. [PS] G. POLYA, G. SZEGÖ, Aufgaben und Lehrsätze aus der Analysis, vol. 2, 3rd ed., Grundlehren, Bd 20, Springer-Verlag, New York, 1964. Zbl0122.29704
  14. [PT] J. PÖSCHEL, E. TRUBOWITZ, Inverse Spectral Theory, Academic Press, 1987. Zbl0623.34001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.