Equilibria and Stability in Set-Valued Analysis: a Viability Approach

Patrick Saint-Pierre

Banach Center Publications (1996)

  • Volume: 35, Issue: 1, page 243-255
  • ISSN: 0137-6934

How to cite

top

Saint-Pierre, Patrick. "Equilibria and Stability in Set-Valued Analysis: a Viability Approach." Banach Center Publications 35.1 (1996): 243-255. <http://eudml.org/doc/251323>.

@article{Saint1996,
author = {Saint-Pierre, Patrick},
journal = {Banach Center Publications},
keywords = {viability kernel; control theory; differential inclusions; epigraph; minimal time function; constrained control problems; Lyapunov functions},
language = {eng},
number = {1},
pages = {243-255},
title = {Equilibria and Stability in Set-Valued Analysis: a Viability Approach},
url = {http://eudml.org/doc/251323},
volume = {35},
year = {1996},
}

TY - JOUR
AU - Saint-Pierre, Patrick
TI - Equilibria and Stability in Set-Valued Analysis: a Viability Approach
JO - Banach Center Publications
PY - 1996
VL - 35
IS - 1
SP - 243
EP - 255
LA - eng
KW - viability kernel; control theory; differential inclusions; epigraph; minimal time function; constrained control problems; Lyapunov functions
UR - http://eudml.org/doc/251323
ER -

References

top
  1. [1] J.-P Aubin and Byrnes, Lyapunov functions Associated with Attractors of Differential Inclusions. Cahier de Mathématiques de la Décision, (to appear). 
  2. [2] J.-P Aubin and H. Frankowska, Set-valued analysis, Birkhaüser, 1992. 
  3. [3] J.-P Aubin, Viability Theory, Birkhaüser, 1992. 
  4. [4] P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Some Algorithms for Differential Games with two Players and one Target. To appear in Journal of Mathematical Systems, Estimation and Control, 1994. 
  5. [5] P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Temps optimaux pour des problèmes avec contraintes et sans contrôlabilité locale, C. R. A. S. 318 (1994), 607-612. 
  6. [6] P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Temps optimaux pour des problèmes avec contraintes et sans contrôlabilité locale (to appear). 
  7. [7] P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Differential Games with state-constraints, Cahier de Mathématiques de la Décision, 1995. 
  8. [8] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Control and Optimization 31 (1) (1995), 257-272. Zbl0796.49024
  9. [9] M. Quincampoix and P. Saint-Pierre, An Algorithm for Viability Kernels in Hölderian case: Approximation by Discrete Dynamical Systems, (& M. Quincampoix), Journal of Mathematical Systems, Estimation and Control 1993. 
  10. [10] P. Saint-Pierre, Discrete Approximation of the Viability Kernel, Applied Mathematics and Optimisation 29, 187-209. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.