Penrose transform and monogenic sections
Archivum Mathematicum (2012)
- Volume: 048, Issue: 5, page 399-410
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topSalač, Tomáš. "Penrose transform and monogenic sections." Archivum Mathematicum 048.5 (2012): 399-410. <http://eudml.org/doc/251355>.
@article{Salač2012,
abstract = {The Penrose transform gives an isomorphism between the kernel of the $2$-Dirac operator over an affine subset and the third sheaf cohomology group on the twistor space. In the paper we give an integral formula which realizes the isomorphism and decompose the kernel as a module of the Levi factor of the parabolic subgroup. This gives a new insight into the structure of the kernel of the operator.},
author = {Salač, Tomáš},
journal = {Archivum Mathematicum},
keywords = {Penrose transform; monogenic spinors; Penrose transform; monogenic spinors},
language = {eng},
number = {5},
pages = {399-410},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Penrose transform and monogenic sections},
url = {http://eudml.org/doc/251355},
volume = {048},
year = {2012},
}
TY - JOUR
AU - Salač, Tomáš
TI - Penrose transform and monogenic sections
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 5
SP - 399
EP - 410
AB - The Penrose transform gives an isomorphism between the kernel of the $2$-Dirac operator over an affine subset and the third sheaf cohomology group on the twistor space. In the paper we give an integral formula which realizes the isomorphism and decompose the kernel as a module of the Levi factor of the parabolic subgroup. This gives a new insight into the structure of the kernel of the operator.
LA - eng
KW - Penrose transform; monogenic spinors; Penrose transform; monogenic spinors
UR - http://eudml.org/doc/251355
ER -
References
top- Baston, R. J., 10.1016/0393-0440(92)90042-Y, J. Geom. Phys. 8 (1992), 29–52. (1992) Zbl0764.53022MR1165872DOI10.1016/0393-0440(92)90042-Y
- Baston, R. J., Eastwood, M., The Penrose transform – its interaction with representation theory, Oxford University Press, 1989. (1989) Zbl0726.58004MR1038279
- Čap, A., Slovák, J., Parabolic Geometries I, Background and General Theory, American Mathematical Society, Providence, 2009. (2009) Zbl1183.53002MR2532439
- Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C., Analysis of Dirac Systems and Computational Algebra, Birkhäauser, Boston, 2004. (2004) Zbl1064.30049MR2089988
- Franek, P., Generalized Dolbeault Sequences in Parabolic Geometry, J. Lie Theory 18 (4) (2008), 757–773. (2008) Zbl1176.17003MR2523135
- Goodman, R., Wallach, N. R., Representations and Invariants of the Classical Groups, Cambridge University Press, 1998. (1998) Zbl0901.22001MR1606831
- Krump, L., Salač, T., Exactness of the Generalized Dolbeault Complex for k Dirac Operators in the Stable Rank, Numerical Analysis and Applied Mathematics ICNAAM, vol. 1479, 2012, pp. 300–303. (2012)
- Salač, T., k-Dirac operators and parabolic geometries, arXiv:1201.0355, 2012.
- Salač, T., The generalized Dolbeault complexes in Clifford analysis, Ph.D. thesis, MFF UK UUK, Prague, 2012. (2012)
- Ward, R. S., Wells, R. O., Jr.,, Twistor Geometry and Field, Cambridge University Press, 1990. (1990) MR1054377
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.