A generalization of Dixon's description of extended bodies
A new class of relativistic diffusions encompassing all the previously studied examples has recently been introduced in the article of C. Chevalier and F. Debbasch (J. Math. Phys. 49 (2008) 043303), both in a heuristic and analytic way. A stochastic approach of these processes is proposed here, in the general framework of lorentzian geometry. In considering the dynamics of the random motion in strongly causal spacetimes, we are able to give a simple definition of the one-particle distribution function...
The central «pseudopotentials» yielding, in relativistic mechanics, closed (bounded) orbits for any given energy are derived by inspection (of the algebraic form of the hamiltonian).
In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.
The geodesic deviation equations, called also the Jacobi equations, describe only the first-order effects, linear in the small parameter characterizing the deviation from an original worldline. They can be easily generalized if we take into account the higher-order terms. Here we derive these higher-order equations not only directly, but also from the Taylor expansion of the variational principle itself. Then we show how these equations can be used in a novel approach to the two-body problem in...
The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric defines the canonical contact structure on the odd-dimensional phase space. In the paper we study infinitesimal symmetries of the gravitational contact phase structure which are not generated by spacetime infinitesimal symmetries, i.e. they are hidden symmetries. We prove that Killing multivector fields admit hidden symmetries of the gravitational contact phase structure and we give...
Formulating the two-body problem of classical relativistic electrodynamics in terms of action at a distance and using retarded potential, the equations of one-dimensional motion are functional differential equations of the retarded type. For this kind of equations, in general it is not enough to specify instantaneous data to specify unique trajectories. Nevertheless, Driver (1969) has shown that under special conditions for these electrodynamic equations, there exists an unique solution for this...