Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes

Abdallah Bradji; Jürgen Fuhrmann

Applications of Mathematics (2013)

  • Volume: 58, Issue: 1, page 1-38
  • ISSN: 0862-7940

Abstract

top
A general class of nonconforming meshes has been recently studied for stationary anisotropic heterogeneous diffusion problems, see Eymard et al. (IMA J. Numer. Anal. 30 (2010), 1009–1043). Thanks to the basic ideas developed in the stated reference for stationary problems, we derive a new discretization scheme in order to approximate the nonstationary heat problem. The unknowns of this scheme are the values at the centre of the control volumes, at some internal interfaces, and at the mesh points of the time discretization. We derive error estimates in discrete norms 𝕃 ( 0 , T ; H 0 1 ( Ω ) ) and 𝒲 1 , ( 0 , T ; L 2 ( Ω ) ) , and an error estimate for an approximation of the gradient, in a general framework in which the discrete bilinear form involved in the finite volume scheme satisfies some ellipticity condition.

How to cite

top

Bradji, Abdallah, and Fuhrmann, Jürgen. "Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes." Applications of Mathematics 58.1 (2013): 1-38. <http://eudml.org/doc/251385>.

@article{Bradji2013,
abstract = {A general class of nonconforming meshes has been recently studied for stationary anisotropic heterogeneous diffusion problems, see Eymard et al. (IMA J. Numer. Anal. 30 (2010), 1009–1043). Thanks to the basic ideas developed in the stated reference for stationary problems, we derive a new discretization scheme in order to approximate the nonstationary heat problem. The unknowns of this scheme are the values at the centre of the control volumes, at some internal interfaces, and at the mesh points of the time discretization. We derive error estimates in discrete norms $\mathbb \{L\}^\{\infty \}(0,T;H^1_0(\Omega ))$ and $\{\mathcal \{W\}\}^\{1,\infty \}(0,T;L^2(\Omega ))$, and an error estimate for an approximation of the gradient, in a general framework in which the discrete bilinear form involved in the finite volume scheme satisfies some ellipticity condition.},
author = {Bradji, Abdallah, Fuhrmann, Jürgen},
journal = {Applications of Mathematics},
keywords = {non-conforming grid; nonstationary heat equation; several space dimension; SUSHI scheme; implicit scheme; discrete gradient; finite volume method; heat equation; error estimate; discrete gradient; nonconforming grids; star-shaped elements; SUSHI scheme},
language = {eng},
number = {1},
pages = {1-38},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes},
url = {http://eudml.org/doc/251385},
volume = {58},
year = {2013},
}

TY - JOUR
AU - Bradji, Abdallah
AU - Fuhrmann, Jürgen
TI - Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 1
SP - 1
EP - 38
AB - A general class of nonconforming meshes has been recently studied for stationary anisotropic heterogeneous diffusion problems, see Eymard et al. (IMA J. Numer. Anal. 30 (2010), 1009–1043). Thanks to the basic ideas developed in the stated reference for stationary problems, we derive a new discretization scheme in order to approximate the nonstationary heat problem. The unknowns of this scheme are the values at the centre of the control volumes, at some internal interfaces, and at the mesh points of the time discretization. We derive error estimates in discrete norms $\mathbb {L}^{\infty }(0,T;H^1_0(\Omega ))$ and ${\mathcal {W}}^{1,\infty }(0,T;L^2(\Omega ))$, and an error estimate for an approximation of the gradient, in a general framework in which the discrete bilinear form involved in the finite volume scheme satisfies some ellipticity condition.
LA - eng
KW - non-conforming grid; nonstationary heat equation; several space dimension; SUSHI scheme; implicit scheme; discrete gradient; finite volume method; heat equation; error estimate; discrete gradient; nonconforming grids; star-shaped elements; SUSHI scheme
UR - http://eudml.org/doc/251385
ER -

References

top
  1. Bradji, A., Fuhrmann, J., 10.1016/j.crma.2010.09.020, C. R. Math. Acad. Sci. Paris 348 (2010), 1119-1122. (2010) Zbl1201.65167MR2735020DOI10.1016/j.crma.2010.09.020
  2. Bradji, A., Fuhrmann, J., Some error estimates for the discretization of parabolic equations on general multidimensional nonconforming spatial meshes, NMA 2010, LNCS 6046 (2011) 269-276 I. Domov, S. Dimova, N. Kolkovska Springer Berlin (2011). (2011) MR2794714
  3. Bradji, A., 10.1016/j.crma.2008.03.023, C. R. Math. Acad. Sci. Paris 346 (2008), 571-574. (2008) MR2412799DOI10.1016/j.crma.2008.03.023
  4. Bradji, A., Fuhrmann, J., Some error estimates in finite volume method for parabolic equations, Finite Volumes for Complex Applications V. Proc. 5th Int. Symp. R. Eymard, J.-M. Hérard John Wiley & Sons (2008), 233-240. (2008) MR2451412
  5. Bradji, A., Herbin, R., 10.1093/imanum/drm030, IMA J. Numer. Anal. 28 (2008), 469-495. (2008) Zbl1144.78024MR2433209DOI10.1093/imanum/drm030
  6. Brézis, H., Analyse Fonctionnelle: Théorie et Applications, Mason Paris (1994), French. (1994) Zbl1147.46300MR0697382
  7. Chatzipantelidis, P., Lazarov, R. D., Thomée, V., 10.1002/num.20351, Numer. Methods Partial Differ. Equ. 25 (2009), 507-525. (2009) Zbl1168.65051MR2510745DOI10.1002/num.20351
  8. Chatzipantelidis, P., Lazarov, R. D., Thomée, V., 10.1002/num.20006, Numer. Methods Partial Differ. Equ. 20 (2004), 650-674. (2004) MR2076342DOI10.1002/num.20006
  9. Ciarlet, P. G., 10.1016/S1570-8659(05)80039-0, Handbook of Numerical Analysis, Vol. II P. G. Ciarlet, J.-L. Lions North-Holland Amsterdam (1991), 17-352. (1991) Zbl0875.65086MR1115237DOI10.1016/S1570-8659(05)80039-0
  10. Dolejší, V., Feistauer, M., Kučera, V., Sobotíková, V., 10.1093/imanum/drm023, IMA J. Numer. Anal. 28 (2008), 496-521. (2008) Zbl1158.65067MR2433210DOI10.1093/imanum/drm023
  11. Evans, L. C., Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19, Am. Math. Soc. Providence (1998). (1998) 
  12. Eymard, R., Gallouët, T., Herbin, R., 10.1093/imanum/drn084, IMA J. Numer. Anal. 30 (2010), 1009-1043. (2010) Zbl1202.65144MR2727814DOI10.1093/imanum/drn084
  13. Eymard, R., Gallouët, T., Herbin, R., 10.1515/JNUM.2009.010, J. Numer. Math. 17 (2009), 173-193. (2009) MR2573566DOI10.1515/JNUM.2009.010
  14. Eymard, R., Gallouët, T., Herbin, R., 10.1016/j.crma.2007.01.024, C. R. Math. Acad. Sci. Paris 344 (2007), 403-406. (2007) Zbl1112.65120MR2310678DOI10.1016/j.crma.2007.01.024
  15. Eymard, R., Gallouët, T., Herbin, R., 10.1093/imanum/dri036, IMA J. Numer. Anal. 26 (2006), 326-353. (2006) Zbl1093.65110MR2218636DOI10.1093/imanum/dri036
  16. Eymard, R., Gallouët, T., Herbin, R., Finite Volume Methods. Handbook of Numerical Analysis, Vol. VII, P. G. Ciarlet, J.-L. Lions North-Holland/Elsevier Amsterdam (2000), 713-1020. (2000) MR1804748
  17. Feistauer, M., Felcman, J., Straškraba, I., Mathematical and Computational Methods for Compressible Flow. Numerical Mathematics and Scientific Computation, Oxford University Press Oxford (2003). (2003) MR2261900
  18. Gallouët, T., Herbin, R., Vignal, M. H., 10.1137/S0036142999351388, SIAM J. Numer. Anal. 37 (2000), 1935-1972. (2000) MR1766855DOI10.1137/S0036142999351388
  19. Thomée, V., Galerkin Finite Element Methods for Parabolic Problems, 2nd edition, Springer Berlin (2006). (2006) MR2249024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.