The generalized finite volume SUSHI scheme for the discretization of the peaceman model
Mohamed Mandari; Mohamed Rhoudaf; Ouafa Soualhi
Applications of Mathematics (2021)
- Volume: 66, Issue: 1, page 115-143
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMandari, Mohamed, Rhoudaf, Mohamed, and Soualhi, Ouafa. "The generalized finite volume SUSHI scheme for the discretization of the peaceman model." Applications of Mathematics 66.1 (2021): 115-143. <http://eudml.org/doc/297030>.
@article{Mandari2021,
abstract = {We demonstrate some a priori estimates of a scheme using stabilization and hybrid interfaces applying to partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration of invading fluid. The anisotropic diffusion operators in both equations require special care while discretizing by a finite volume method SUSHI. Later, we present some numerical experiments.},
author = {Mandari, Mohamed, Rhoudaf, Mohamed, Soualhi, Ouafa},
journal = {Applications of Mathematics},
keywords = {porous medium; nonconforming grid; finite volume scheme; a priori estimate; miscible fluid flow},
language = {eng},
number = {1},
pages = {115-143},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The generalized finite volume SUSHI scheme for the discretization of the peaceman model},
url = {http://eudml.org/doc/297030},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Mandari, Mohamed
AU - Rhoudaf, Mohamed
AU - Soualhi, Ouafa
TI - The generalized finite volume SUSHI scheme for the discretization of the peaceman model
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 115
EP - 143
AB - We demonstrate some a priori estimates of a scheme using stabilization and hybrid interfaces applying to partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration of invading fluid. The anisotropic diffusion operators in both equations require special care while discretizing by a finite volume method SUSHI. Later, we present some numerical experiments.
LA - eng
KW - porous medium; nonconforming grid; finite volume scheme; a priori estimate; miscible fluid flow
UR - http://eudml.org/doc/297030
ER -
References
top- Bartels, S., Jensen, M., Müller, R., 10.1137/070712079, SIAM J. Numer. Anal. 47 (2009), 3720-3743. (2009) Zbl1410.76154MR2576518DOI10.1137/070712079
- Becker, J., Grün, G., Lenz, M., Rumpf, M., 10.1023/B:APOM.0000034537.55985.44, Appl. Math., Praha 47 (2002), 517-543. (2002) Zbl1090.35086MR1948194DOI10.1023/B:APOM.0000034537.55985.44
- Bradji, A., Fuhrmann, J., 10.1007/s10492-013-0001-y, Appl. Math., Praha 58 (2013), 1-38. (2013) Zbl1274.65251MR3022767DOI10.1007/s10492-013-0001-y
- Brenner, K., Hilhorst, D., Vu-Do, H.-C., 10.1007/s10013-015-0170-y, Vietnam J. Math. 44 (2016), 557-586. (2016) Zbl1348.35093MR3541150DOI10.1007/s10013-015-0170-y
- Chainais-Hillairet, C., Droniou, J., 10.1137/060657236, SIAM J. Numer. Anal. 45 (2007), 2228-2258. (2007) Zbl1146.76034MR2346377DOI10.1137/060657236
- Chainais-Hillairet, C., Krell, S., Mouton, A., 10.1137/130910555, SIAM J. Sci. Comput. 35 (2013), A2928--A2952. (2013) Zbl1292.76044MR3141755DOI10.1137/130910555
- Chainais-Hillairet, C., Krell, S., Mouton, A., 10.1002/num.21913, Numer. Methods Partial Differ. Equations 31 (2015), 723-760. (2015) Zbl1325.76128MR3332290DOI10.1002/num.21913
- J. Douglas, Jr., The numerical simulation of miscible displacement in porous media, Computational Methods in Nonlinear Mechanics North-Holland, Amsterdam (1980), 225-237. (1980) Zbl0439.76087MR0576907
- J. Douglas, Jr., Numerical methods for the flow of miscible fluids in porous media, Numerical Methods in Coupled Systems Wiley Series in Numerical Methods in Engineering. Wiley, Chichester (1984), 405-439. (1984) Zbl0585.76138
- J. Douglas, Jr., R. E. Ewing, M. F. Wheeler, 10.1051/m2an/1983170302491, RAIRO, Anal. Numér. 17 (1983), 249-265. (1983) Zbl0526.76094MR0702137DOI10.1051/m2an/1983170302491
- J. Douglas, Jr., R. E. Ewing, M. F. Wheeler, 10.1051/m2an/1983170100171, RAIRO, Anal. Numér. 17 (1983), 17-33. (1983) Zbl0516.76094MR0695450DOI10.1051/m2an/1983170100171
- J. Douglas, Jr., J. E. Roberts, 10.2307/2007685, Math. Comput. 41 (1983), 441-459. (1983) Zbl0537.76062MR0717695DOI10.2307/2007685
- Ewing, R. E., Russell, T. F., Wheeler, M. F., 10.2118/12241-MS, SPE Reservoir Simulation Symposium Society of Petroleum Engineers, San Francisco (1983), ID SPE-12241-MS. (1983) MR0770577DOI10.2118/12241-MS
- Ewing, R. E., Russell, T. F., Wheeler, M. F., 10.1016/0045-7825(84)90048-3, Comput. Methods Appl. Mech. Eng. 47 (1984), 73-92 (1984). (1984) Zbl0545.76131MR0777394DOI10.1016/0045-7825(84)90048-3
- Eymard, R., Gallouët, T., Herbin, R., 10.1016/S1570-8659(00)07005-8, Handbook of Numerical Analysis, Volume 7 P. Ciarlet et al. North-Holland/ Elsevier, Amsterdam (2000), 713-1020. (2000) Zbl0981.65095MR1804748DOI10.1016/S1570-8659(00)07005-8
- Eymard, R., Gallouët, T., Herbin, R., 10.1093/imanum/drn084, IMA J. Numer. Anal. 30 (2010), 1009-1043. (2010) Zbl1202.65144MR2727814DOI10.1093/imanum/drn084
- Eymard, R., Handlovičová, A., Herbin, R., Mikula, K., Stašová, O., 10.1007/s10492-015-0088-4, Appl. Math., Praha 60 (2015), 135-156. (2015) Zbl1340.65187MR3320342DOI10.1007/s10492-015-0088-4
- Feng, X., 10.1006/jmaa.1995.1334, J. Math. Anal. Appl. 194 (1995), 883-910. (1995) Zbl0856.35030MR1350201DOI10.1006/jmaa.1995.1334
- Jaffre, J., Roberts, J. E., 10.1051/m2an/1985190304431, RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 443-460. (1985) Zbl0568.76096MR0807326DOI10.1051/m2an/1985190304431
- Russell, T. F., 10.2118/10500-MS, SPE Reservoir Simulation Symposium Society of Petroleum Engineers, New Orleans (1982), ID SPE-10500-MS. (1982) DOI10.2118/10500-MS
- Sammon, P. H., 10.1137/0723034, SIAM J. Numer. Anal. 23 (1986), 508-542. (1986) Zbl0608.76084MR0842642DOI10.1137/0723034
- Wang, H., Liang, D., Ewing, R. E., Lyons, S. L., Qin, G., 10.1137/S1064827598349215, SIAM J. Sci. Comput. 22 (2000), 561-581. (2000) Zbl0988.76054MR1780614DOI10.1137/S1064827598349215
- Wang, H., Liang, D., Ewing, R. E., Lyons, S. L., Qin, G., 10.1002/num.10045, Numer. Methods Partial Differ. Equations 19 (2003), 343-362. (2003) Zbl1079.76044MR1969198DOI10.1002/num.10045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.