The principle of stationary action in the calculus of variations

Emanuel López; Alberto Molgado; José A. Vallejo

Communications in Mathematics (2012)

  • Volume: 20, Issue: 2, page 89-116
  • ISSN: 1804-1388

Abstract

top
We review some techniques from non-linear analysis in order to investigate critical paths for the action functional in the calculus of variations applied to physics. Our main intention in this regard is to expose precise mathematical conditions for critical paths to be minimum solutions in a variety of situations of interest in Physics. Our claim is that, with a few elementary techniques, a systematic analysis (including the domain for which critical points are genuine minima) of non-trivial models is possible. We present specific models arising in modern physical theories in order to make clear the ideas here exposed.

How to cite

top

López, Emanuel, Molgado, Alberto, and Vallejo, José A.. "The principle of stationary action in the calculus of variations." Communications in Mathematics 20.2 (2012): 89-116. <http://eudml.org/doc/251396>.

@article{López2012,
abstract = {We review some techniques from non-linear analysis in order to investigate critical paths for the action functional in the calculus of variations applied to physics. Our main intention in this regard is to expose precise mathematical conditions for critical paths to be minimum solutions in a variety of situations of interest in Physics. Our claim is that, with a few elementary techniques, a systematic analysis (including the domain for which critical points are genuine minima) of non-trivial models is possible. We present specific models arising in modern physical theories in order to make clear the ideas here exposed.},
author = {López, Emanuel, Molgado, Alberto, Vallejo, José A.},
journal = {Communications in Mathematics},
keywords = {stationary action; functional extrema; conjugate points; oscillatory solutions; Lane-Emden equations; stationary action; fundamental extrema; conjugate points; oscillatory solutions; Lane-Emden equations},
language = {eng},
number = {2},
pages = {89-116},
publisher = {University of Ostrava},
title = {The principle of stationary action in the calculus of variations},
url = {http://eudml.org/doc/251396},
volume = {20},
year = {2012},
}

TY - JOUR
AU - López, Emanuel
AU - Molgado, Alberto
AU - Vallejo, José A.
TI - The principle of stationary action in the calculus of variations
JO - Communications in Mathematics
PY - 2012
PB - University of Ostrava
VL - 20
IS - 2
SP - 89
EP - 116
AB - We review some techniques from non-linear analysis in order to investigate critical paths for the action functional in the calculus of variations applied to physics. Our main intention in this regard is to expose precise mathematical conditions for critical paths to be minimum solutions in a variety of situations of interest in Physics. Our claim is that, with a few elementary techniques, a systematic analysis (including the domain for which critical points are genuine minima) of non-trivial models is possible. We present specific models arising in modern physical theories in order to make clear the ideas here exposed.
LA - eng
KW - stationary action; functional extrema; conjugate points; oscillatory solutions; Lane-Emden equations; stationary action; fundamental extrema; conjugate points; oscillatory solutions; Lane-Emden equations
UR - http://eudml.org/doc/251396
ER -

References

top
  1. Adams, R. A., Sobolev spaces, 1978, Academic Press, (1978) Zbl0347.46040
  2. Agarwal, R. P., O'Regan, D., An introduction to ordinary differential equations, 2008, Springer Verlag, (2008) Zbl1158.34001MR2439721
  3. Baez, J. C., 10.1088/0264-9381/15/7/004, Class. Quant. Grav., 15, 1998, 1827-1858, (1998) Zbl0932.83014MR1633142DOI10.1088/0264-9381/15/7/004
  4. Baker, L. M., Fairlie, D. B., 10.1016/S0550-3213(00)00703-3, Nucl. Phys. B, 596, 2001, 348-364, (2001) Zbl0972.81146MR1814256DOI10.1016/S0550-3213(00)00703-3
  5. Basdevant, J. L., Variational principles in Physics, 2010, Springer, (2010) MR2285636
  6. Berezin, V., 10.1016/S0920-5632(97)00370-8, Nucl. Phys. Proc. Suppl., 57, 1997, 181-183, (1997) Zbl0976.83531MR1480197DOI10.1016/S0920-5632(97)00370-8
  7. Binney, J., Tremain, S., Galactic dynamics, 1994, Princeton University Press, (1994) 
  8. Buck, B., (eds), V. A. Macaulay, Maximum Entropy in Action: A Collection of Expository Essays, 1991, Oxford University Press, (1991) 
  9. Burghes, D. N., Graham, A., Introduction to Control Theory, Including Optimal Control, 1980, Wiley, (1980) Zbl0428.93001MR0583584
  10. Carlini, A., Frolov, V. P., Mensky, M. B., Novikov, I. D., Soleng, H. H., 10.1142/S0218271895000399, Int. J. Mod. Phys. D, 4, 1995, 557-580, (1995) MR1363650DOI10.1142/S0218271895000399
  11. Carlini, A., Greensite, J., 10.1103/PhysRevD.52.6947, Phys. Rev. D, 52, 1995, 6947-6964, (1995) MR1375862DOI10.1103/PhysRevD.52.6947
  12. Carlip, S., 10.1103/PhysRevD.45.3584, Phys. Rev. D, 45, 1992, 3584-3590, Erratum-ibid D47 (1993) 1729. (1992) MR1163107DOI10.1103/PhysRevD.45.3584
  13. Chandrasekhar, S., An Introduction to the Study of Stellar Structure, 1967, Dover publications, (1967) MR0092663
  14. Coffman, C. V., Wong, J. S. V., 10.1090/S0002-9947-1972-0296413-9, Transactions of the AMS, 167, 1972, 399-434, (1972) Zbl0278.34026MR0296413DOI10.1090/S0002-9947-1972-0296413-9
  15. Collins, G. W., The fundamentals of stellar astrophysics, 1989, Freeman, (1989) 
  16. Curtain, R. F., Pritchard, A. J., Functional analysis in modern applied mathematics, 1977, Academic Press, (1977) Zbl0448.46002MR0479787
  17. Emden, R., Gaskugeln, Anwendungen der mechanischen Warmen-theorie auf Kosmologie und meteorologische Probleme, 1907, B. G. Teubner, (1907) 
  18. Fiziev, P. P., 10.1007/BF01033521, Theor. Math. Phys., 62, 2, 1985, 123-130, (1985) MR0783051DOI10.1007/BF01033521
  19. Flett, T. M., Differential analysis, 1980, Cambridge University Press, (1980) Zbl0442.34002MR0561908
  20. Fowler, R. H., Some results on the form near infinity of real continuous solutions of a certain type of second order differential equations, Proc. London Math. Soc., 13, 1914, 341-371, (1914) MR1577508
  21. Fowler, R. H., The form near infinity of real, continuous solutions of a certain differential equation of the second order, Quart. J. Math., 45, 1914, 289-350, (1914) 
  22. Fowler, R. H., The solution of Emden's and similar differential equations, Monthly Notices Roy. Astro. Soc., 91, 1930, 63-91, (1930) 
  23. Fowler, R. H., 10.1093/qmath/os-2.1.259, Quart. J. Math., 2, 1931, 259-288, (1931) Zbl0003.23502DOI10.1093/qmath/os-2.1.259
  24. Fox, C., An introduction to the calculus of variations, 1963, Cambridge University Press, Reprinted by Dover (1987). (1963) MR0919400
  25. Friedman, J. L., Louko, J., Winters-Hilt, S. N., 10.1103/PhysRevD.56.7674, Phys. Rev. D, 56, 1997, 7674-7691, (1997) MR1603603DOI10.1103/PhysRevD.56.7674
  26. García, P. L., The Poincaré-Cartan invariant in the calculus of variations, Symposia Mathematica, 14, 1974, 219-246, (1974) Zbl0303.53040MR0406246
  27. Garrett, B. C., Abusalbi, N., Kouri, D. J., Truhlar, D. G., 10.1063/1.449318, J. Chem. Phys., 83, 1985, 2252-2258, (1985) DOI10.1063/1.449318
  28. Gelfand, I. M., Fomin, S. V., Calculus of variations, 2000, Dover, (2000) Zbl0964.49001
  29. Giachetta, G., Mangiarotti, L., Sardanashvily, G., Advanced classical field theory, 2009, World Scientific, (2009) Zbl1179.81002MR2527556
  30. Giaquinta, M., Hildebrandt, S., Calculus of variations I: The Lagrangian formalism, 1996, Springer Verlag, (1996) MR1368401
  31. Goenner, H., Havas, P., 10.1063/1.1308076, J. Math. Phys., 41, 10, 2000, 7029-7043, (2000) Zbl1009.34002MR1781422DOI10.1063/1.1308076
  32. Goldschmidt, H., Sternberg, S., 10.5802/aif.451, Ann. Inst. Fourier (Grenoble), 23, 1973, 203-267, (1973) Zbl0243.49011MR0341531DOI10.5802/aif.451
  33. Goldstein, H., Poole, C., Safko, J., Classical Mechanics, 3rd. ed., 2001, Addison-Wesley, (2001) MR0043608
  34. González, G., 10.1007/s10773-005-9003-1, Int. J. Theor. Phys., 46, 3, 2007, 417-423, (2007) Zbl1115.83002MR2304940DOI10.1007/s10773-005-9003-1
  35. Gray, C. G., Karl, G., Novikov, V. A., 10.1088/0034-4885/67/2/R02, Rep. Prog. Phys., 67, 2004, 159-208, (2004) MR2033823DOI10.1088/0034-4885/67/2/R02
  36. Gray, C. G., Poisson, E., 10.1119/1.3488986, Am. J. Phys., 79, 1, 2011, 43-56, (2011) DOI10.1119/1.3488986
  37. Gray, C. G., Taylor, E. F., 10.1119/1.2710480, Am. J. Phys., 75, 5, 2007, 434-458, (2007) DOI10.1119/1.2710480
  38. Hamber, H. W., Williams, R. M., 10.1016/0550-3213(95)00358-Y, Nuclear Physics B, 451, 1995, 305-324, (1995) Zbl0925.83004MR1352417DOI10.1016/0550-3213(95)00358-Y
  39. Hand, L. N., Finch, J. D., Analytical Mechanics, 1998, Cambridge University Press, (1998) 
  40. Harremoës, P., Topsøe, F., 10.3390/e3030191, Entropy, 3, 2001, 191-226, (2001) MR1885052DOI10.3390/e3030191
  41. Hermes, H., Lasalle, J. P., Functional analysis and time optimal control, 1969, Academic Press, (1969) Zbl0203.47504MR0420366
  42. Horedt, G. P., Polytropes: Applications in astrophysics and related fields, 2004, Kluwer, (2004) 
  43. Jaynes, E. T., 10.1103/PhysRev.106.620, Phys. Rev., 106, 1957, 620-630, (1957) Zbl0084.43701MR0087305DOI10.1103/PhysRev.106.620
  44. José, J. V., Saletan, E. J., Classical Dynamics, a contemporary approach, 1998, Cambridge University Press, (1998) Zbl0918.70001MR1640663
  45. Kapustnikov, A. A., Pashnev, A., Pichugin, A., 10.1103/PhysRevD.55.2257, Phys. Rev. D, 55, 1997, 2257-2264, (1997) DOI10.1103/PhysRevD.55.2257
  46. Klein, J. F., Physical significance of entropy or of the second law, 2009, Cornell University Library, (2009) 
  47. Krupková, O., The geometry of ordinary variational equations, Lecture Notes in Mathematics 1678, Springer Verlag, 1997, (1997) MR1484970
  48. Krupková, O., (eds.), D. J. Saunders, Variations, geometry and physics, 2009, Nova Science Publishers, (2009) Zbl1209.58002MR2490562
  49. Lane, I. J. H., On the theoretical temperature of the sun under the hypothesis of a gaseous mass maintaining its volume by its internal heat and depending on the laws of gases known to terrestial experiment, Amer. J. Sci. and Arts, 4, 1870, 57-74, (1870) 
  50. Lebedev, L. P., Cloud, M. J., The calculus of variations and functional analysis (with optimal control and applications in mechanics), 2003, World Scientific, (2003) Zbl1042.49001MR2036504
  51. Lucha, W., Schöberl, F. F., 10.1016/0370-2693(96)01057-X, Phys. Lett. B, 387, 1996, 573-576, (1996) DOI10.1016/0370-2693(96)01057-X
  52. Martyushev, L. M., Seleznev, V. D., 10.1016/j.physrep.2005.12.001, Physics Reports, 426, 2006, 1-45, (2006) MR2202942DOI10.1016/j.physrep.2005.12.001
  53. Menotti, P., Hamiltonian structure of 2+1 dimensional gravity, Recent developments in general relativity, 14th SIGRAV Conference on General Relativity and Gravitational Physics, Genova, Italy (2000), 2002, 165-177, Springer, (2002) Zbl1202.83095MR2016032
  54. Moore, T. A., 10.1119/1.1646133, Am. J. Phys., 72, 4, 2004, 522-527, (2004) DOI10.1119/1.1646133
  55. Nersesyan, A. P., 10.1007/BF02557162, Theor. Math. Phys., 117, 1, 1998, 1214-1222, (1998) Zbl1086.37523MR1698528DOI10.1007/BF02557162
  56. Pars, L. A., An introduction to the calculus of variations, 1962, Heinemann, Reprinted by Dover (2010).. (1962) Zbl0108.10303MR0147932
  57. Puzio, R., 10.1088/0264-9381/11/3/013, Class. Quantum Grav., 11, 1994, 609-620, (1994) Zbl0812.32009MR1265382DOI10.1088/0264-9381/11/3/013
  58. Rajaraman, R., Solitons and Instantons, 1988, North--Holland Publishing, (1988) MR0719693
  59. Ramond, P., Field theory: A modern primer (Frontiers in Physics series Vol. 74), 2001, Westview Press, (2001) 
  60. Razavy, M., Classical And Quantum Dissipative Systems, 2006, Imperial College Press, (2006) MR2218674
  61. Rojas, E., 10.1142/S0218271811018615, Int. J. Mod. Phys. D, 20, 2011, 59-75, (2011) Zbl1213.83122MR2771386DOI10.1142/S0218271811018615
  62. Saunders, D. J., 10.1088/0305-4470/20/2/019, J. Phys. A, 20, 1987, 339-349, (1987) Zbl0652.58002MR0874255DOI10.1088/0305-4470/20/2/019
  63. Sagan, H., Introduction to the calculus of variations, 1992, Dover, (1992) MR1210325
  64. Simmons, G. F., Krantz, S. G., Differential Equations: Theory, Technique, and Practice, 2006, McGraw-Hill, (2006) 
  65. Smith, D., Variational methods in optimization, 1998, Dover, (1998) Zbl0918.49001
  66. Stephani, H., Kramer, D., MacCallum, M. A. H., Hoenselaers, C., Herlt, E., Exact Solutions of Einstein's Field Equations, 2003, Cambridge University Press, (2003) Zbl1057.83004MR2003646
  67. Stirzaker, D., Elementary probability, 2003, Cambridge University Press, (2003) Zbl1071.60002MR1998578
  68. Sussmann, H. J., Willems, J. C., 10.1109/37.588098, IEEE Control Systems, 17, 1997, 32-44, (1997) DOI10.1109/37.588098
  69. Taylor, E. F., 10.1119/1.1555874, Am. J. Phys., 71, 5, 2003, 423-425, (2003) DOI10.1119/1.1555874
  70. Taylor, J. R., Classical mechanics, 2005, University Science Books, (2005) Zbl1075.70002
  71. Thornton, S. T., Marion, J. B., Classical Dynamics of Particles and Systems, 2004, Brooks/Cole, (2004) 
  72. Troutman, J. L., Variational Calculus and Optimal Control: Optimization With Elementary Convexity, 1996, Springer Verlag, (1996) Zbl0865.49001MR1363262
  73. Brunt, B. Van, The calculus of variations, 2004, Springer Verlag, (2004) MR2004181
  74. Wang, Q. A., 10.1007/s10509-006-9202-0, Astrophysics and Space Sciences, 305, 2006, 273-281, (2006) DOI10.1007/s10509-006-9202-0
  75. Whittaker, E. T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th. ed, 1937, Dover, (1937) MR0010813
  76. Williams, R. M., 10.1016/S0920-5632(97)00355-1, Nucl. Phys. Proc. Suppl., 57, 1997, 73-81, (1997) Zbl0976.83506MR1480185DOI10.1016/S0920-5632(97)00355-1
  77. Wong, J. S. W., 10.1137/1017036, SIAM Rev., 17, 2, 1975, 339-360, (1975) Zbl0295.34026MR0367368DOI10.1137/1017036
  78. Zaslavski, A. J., Turnpike properties in the calculus of variations and optimal control, 2006, Springer Verlag, (2006) Zbl1100.49003MR2164615
  79. Zeidler, E., Nonlinear functional analysis and its applications, Vol. III: Variational methods and optimization, 1986, Springer Verlag, (1986) 
  80. Zloshchastiev, K. G., 10.1088/0305-4470/31/28/021, J. Phys. A: Math. Gen., 31, 1998, 6081-6085, (1998) Zbl0954.81046DOI10.1088/0305-4470/31/28/021
  81. Zwiebach, B., A First Course in String Theory, 2004, Cambridge University Press, (2004) Zbl1072.81001MR2069234

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.