The principle of stationary action in the calculus of variations
Emanuel López; Alberto Molgado; José A. Vallejo
Communications in Mathematics (2012)
- Volume: 20, Issue: 2, page 89-116
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topLópez, Emanuel, Molgado, Alberto, and Vallejo, José A.. "The principle of stationary action in the calculus of variations." Communications in Mathematics 20.2 (2012): 89-116. <http://eudml.org/doc/251396>.
@article{López2012,
abstract = {We review some techniques from non-linear analysis in order to investigate critical paths for the action functional in the calculus of variations applied to physics. Our main intention in this regard is to expose precise mathematical conditions for critical paths to be minimum solutions in a variety of situations of interest in Physics. Our claim is that, with a few elementary techniques, a systematic analysis (including the domain for which critical points are genuine minima) of non-trivial models is possible. We present specific models arising in modern physical theories in order to make clear the ideas here exposed.},
author = {López, Emanuel, Molgado, Alberto, Vallejo, José A.},
journal = {Communications in Mathematics},
keywords = {stationary action; functional extrema; conjugate points; oscillatory solutions; Lane-Emden equations; stationary action; fundamental extrema; conjugate points; oscillatory solutions; Lane-Emden equations},
language = {eng},
number = {2},
pages = {89-116},
publisher = {University of Ostrava},
title = {The principle of stationary action in the calculus of variations},
url = {http://eudml.org/doc/251396},
volume = {20},
year = {2012},
}
TY - JOUR
AU - López, Emanuel
AU - Molgado, Alberto
AU - Vallejo, José A.
TI - The principle of stationary action in the calculus of variations
JO - Communications in Mathematics
PY - 2012
PB - University of Ostrava
VL - 20
IS - 2
SP - 89
EP - 116
AB - We review some techniques from non-linear analysis in order to investigate critical paths for the action functional in the calculus of variations applied to physics. Our main intention in this regard is to expose precise mathematical conditions for critical paths to be minimum solutions in a variety of situations of interest in Physics. Our claim is that, with a few elementary techniques, a systematic analysis (including the domain for which critical points are genuine minima) of non-trivial models is possible. We present specific models arising in modern physical theories in order to make clear the ideas here exposed.
LA - eng
KW - stationary action; functional extrema; conjugate points; oscillatory solutions; Lane-Emden equations; stationary action; fundamental extrema; conjugate points; oscillatory solutions; Lane-Emden equations
UR - http://eudml.org/doc/251396
ER -
References
top- Adams, R. A., Sobolev spaces, 1978, Academic Press, (1978) Zbl0347.46040
- Agarwal, R. P., O'Regan, D., An introduction to ordinary differential equations, 2008, Springer Verlag, (2008) Zbl1158.34001MR2439721
- Baez, J. C., 10.1088/0264-9381/15/7/004, Class. Quant. Grav., 15, 1998, 1827-1858, (1998) Zbl0932.83014MR1633142DOI10.1088/0264-9381/15/7/004
- Baker, L. M., Fairlie, D. B., 10.1016/S0550-3213(00)00703-3, Nucl. Phys. B, 596, 2001, 348-364, (2001) Zbl0972.81146MR1814256DOI10.1016/S0550-3213(00)00703-3
- Basdevant, J. L., Variational principles in Physics, 2010, Springer, (2010) MR2285636
- Berezin, V., 10.1016/S0920-5632(97)00370-8, Nucl. Phys. Proc. Suppl., 57, 1997, 181-183, (1997) Zbl0976.83531MR1480197DOI10.1016/S0920-5632(97)00370-8
- Binney, J., Tremain, S., Galactic dynamics, 1994, Princeton University Press, (1994)
- Buck, B., (eds), V. A. Macaulay, Maximum Entropy in Action: A Collection of Expository Essays, 1991, Oxford University Press, (1991)
- Burghes, D. N., Graham, A., Introduction to Control Theory, Including Optimal Control, 1980, Wiley, (1980) Zbl0428.93001MR0583584
- Carlini, A., Frolov, V. P., Mensky, M. B., Novikov, I. D., Soleng, H. H., 10.1142/S0218271895000399, Int. J. Mod. Phys. D, 4, 1995, 557-580, (1995) MR1363650DOI10.1142/S0218271895000399
- Carlini, A., Greensite, J., 10.1103/PhysRevD.52.6947, Phys. Rev. D, 52, 1995, 6947-6964, (1995) MR1375862DOI10.1103/PhysRevD.52.6947
- Carlip, S., 10.1103/PhysRevD.45.3584, Phys. Rev. D, 45, 1992, 3584-3590, Erratum-ibid D47 (1993) 1729. (1992) MR1163107DOI10.1103/PhysRevD.45.3584
- Chandrasekhar, S., An Introduction to the Study of Stellar Structure, 1967, Dover publications, (1967) MR0092663
- Coffman, C. V., Wong, J. S. V., 10.1090/S0002-9947-1972-0296413-9, Transactions of the AMS, 167, 1972, 399-434, (1972) Zbl0278.34026MR0296413DOI10.1090/S0002-9947-1972-0296413-9
- Collins, G. W., The fundamentals of stellar astrophysics, 1989, Freeman, (1989)
- Curtain, R. F., Pritchard, A. J., Functional analysis in modern applied mathematics, 1977, Academic Press, (1977) Zbl0448.46002MR0479787
- Emden, R., Gaskugeln, Anwendungen der mechanischen Warmen-theorie auf Kosmologie und meteorologische Probleme, 1907, B. G. Teubner, (1907)
- Fiziev, P. P., 10.1007/BF01033521, Theor. Math. Phys., 62, 2, 1985, 123-130, (1985) MR0783051DOI10.1007/BF01033521
- Flett, T. M., Differential analysis, 1980, Cambridge University Press, (1980) Zbl0442.34002MR0561908
- Fowler, R. H., Some results on the form near infinity of real continuous solutions of a certain type of second order differential equations, Proc. London Math. Soc., 13, 1914, 341-371, (1914) MR1577508
- Fowler, R. H., The form near infinity of real, continuous solutions of a certain differential equation of the second order, Quart. J. Math., 45, 1914, 289-350, (1914)
- Fowler, R. H., The solution of Emden's and similar differential equations, Monthly Notices Roy. Astro. Soc., 91, 1930, 63-91, (1930)
- Fowler, R. H., 10.1093/qmath/os-2.1.259, Quart. J. Math., 2, 1931, 259-288, (1931) Zbl0003.23502DOI10.1093/qmath/os-2.1.259
- Fox, C., An introduction to the calculus of variations, 1963, Cambridge University Press, Reprinted by Dover (1987). (1963) MR0919400
- Friedman, J. L., Louko, J., Winters-Hilt, S. N., 10.1103/PhysRevD.56.7674, Phys. Rev. D, 56, 1997, 7674-7691, (1997) MR1603603DOI10.1103/PhysRevD.56.7674
- García, P. L., The Poincaré-Cartan invariant in the calculus of variations, Symposia Mathematica, 14, 1974, 219-246, (1974) Zbl0303.53040MR0406246
- Garrett, B. C., Abusalbi, N., Kouri, D. J., Truhlar, D. G., 10.1063/1.449318, J. Chem. Phys., 83, 1985, 2252-2258, (1985) DOI10.1063/1.449318
- Gelfand, I. M., Fomin, S. V., Calculus of variations, 2000, Dover, (2000) Zbl0964.49001
- Giachetta, G., Mangiarotti, L., Sardanashvily, G., Advanced classical field theory, 2009, World Scientific, (2009) Zbl1179.81002MR2527556
- Giaquinta, M., Hildebrandt, S., Calculus of variations I: The Lagrangian formalism, 1996, Springer Verlag, (1996) MR1368401
- Goenner, H., Havas, P., 10.1063/1.1308076, J. Math. Phys., 41, 10, 2000, 7029-7043, (2000) Zbl1009.34002MR1781422DOI10.1063/1.1308076
- Goldschmidt, H., Sternberg, S., 10.5802/aif.451, Ann. Inst. Fourier (Grenoble), 23, 1973, 203-267, (1973) Zbl0243.49011MR0341531DOI10.5802/aif.451
- Goldstein, H., Poole, C., Safko, J., Classical Mechanics, 3rd. ed., 2001, Addison-Wesley, (2001) MR0043608
- González, G., 10.1007/s10773-005-9003-1, Int. J. Theor. Phys., 46, 3, 2007, 417-423, (2007) Zbl1115.83002MR2304940DOI10.1007/s10773-005-9003-1
- Gray, C. G., Karl, G., Novikov, V. A., 10.1088/0034-4885/67/2/R02, Rep. Prog. Phys., 67, 2004, 159-208, (2004) MR2033823DOI10.1088/0034-4885/67/2/R02
- Gray, C. G., Poisson, E., 10.1119/1.3488986, Am. J. Phys., 79, 1, 2011, 43-56, (2011) DOI10.1119/1.3488986
- Gray, C. G., Taylor, E. F., 10.1119/1.2710480, Am. J. Phys., 75, 5, 2007, 434-458, (2007) DOI10.1119/1.2710480
- Hamber, H. W., Williams, R. M., 10.1016/0550-3213(95)00358-Y, Nuclear Physics B, 451, 1995, 305-324, (1995) Zbl0925.83004MR1352417DOI10.1016/0550-3213(95)00358-Y
- Hand, L. N., Finch, J. D., Analytical Mechanics, 1998, Cambridge University Press, (1998)
- Harremoës, P., Topsøe, F., 10.3390/e3030191, Entropy, 3, 2001, 191-226, (2001) MR1885052DOI10.3390/e3030191
- Hermes, H., Lasalle, J. P., Functional analysis and time optimal control, 1969, Academic Press, (1969) Zbl0203.47504MR0420366
- Horedt, G. P., Polytropes: Applications in astrophysics and related fields, 2004, Kluwer, (2004)
- Jaynes, E. T., 10.1103/PhysRev.106.620, Phys. Rev., 106, 1957, 620-630, (1957) Zbl0084.43701MR0087305DOI10.1103/PhysRev.106.620
- José, J. V., Saletan, E. J., Classical Dynamics, a contemporary approach, 1998, Cambridge University Press, (1998) Zbl0918.70001MR1640663
- Kapustnikov, A. A., Pashnev, A., Pichugin, A., 10.1103/PhysRevD.55.2257, Phys. Rev. D, 55, 1997, 2257-2264, (1997) DOI10.1103/PhysRevD.55.2257
- Klein, J. F., Physical significance of entropy or of the second law, 2009, Cornell University Library, (2009)
- Krupková, O., The geometry of ordinary variational equations, Lecture Notes in Mathematics 1678, Springer Verlag, 1997, (1997) MR1484970
- Krupková, O., (eds.), D. J. Saunders, Variations, geometry and physics, 2009, Nova Science Publishers, (2009) Zbl1209.58002MR2490562
- Lane, I. J. H., On the theoretical temperature of the sun under the hypothesis of a gaseous mass maintaining its volume by its internal heat and depending on the laws of gases known to terrestial experiment, Amer. J. Sci. and Arts, 4, 1870, 57-74, (1870)
- Lebedev, L. P., Cloud, M. J., The calculus of variations and functional analysis (with optimal control and applications in mechanics), 2003, World Scientific, (2003) Zbl1042.49001MR2036504
- Lucha, W., Schöberl, F. F., 10.1016/0370-2693(96)01057-X, Phys. Lett. B, 387, 1996, 573-576, (1996) DOI10.1016/0370-2693(96)01057-X
- Martyushev, L. M., Seleznev, V. D., 10.1016/j.physrep.2005.12.001, Physics Reports, 426, 2006, 1-45, (2006) MR2202942DOI10.1016/j.physrep.2005.12.001
- Menotti, P., Hamiltonian structure of 2+1 dimensional gravity, Recent developments in general relativity, 14th SIGRAV Conference on General Relativity and Gravitational Physics, Genova, Italy (2000), 2002, 165-177, Springer, (2002) Zbl1202.83095MR2016032
- Moore, T. A., 10.1119/1.1646133, Am. J. Phys., 72, 4, 2004, 522-527, (2004) DOI10.1119/1.1646133
- Nersesyan, A. P., 10.1007/BF02557162, Theor. Math. Phys., 117, 1, 1998, 1214-1222, (1998) Zbl1086.37523MR1698528DOI10.1007/BF02557162
- Pars, L. A., An introduction to the calculus of variations, 1962, Heinemann, Reprinted by Dover (2010).. (1962) Zbl0108.10303MR0147932
- Puzio, R., 10.1088/0264-9381/11/3/013, Class. Quantum Grav., 11, 1994, 609-620, (1994) Zbl0812.32009MR1265382DOI10.1088/0264-9381/11/3/013
- Rajaraman, R., Solitons and Instantons, 1988, North--Holland Publishing, (1988) MR0719693
- Ramond, P., Field theory: A modern primer (Frontiers in Physics series Vol. 74), 2001, Westview Press, (2001)
- Razavy, M., Classical And Quantum Dissipative Systems, 2006, Imperial College Press, (2006) MR2218674
- Rojas, E., 10.1142/S0218271811018615, Int. J. Mod. Phys. D, 20, 2011, 59-75, (2011) Zbl1213.83122MR2771386DOI10.1142/S0218271811018615
- Saunders, D. J., 10.1088/0305-4470/20/2/019, J. Phys. A, 20, 1987, 339-349, (1987) Zbl0652.58002MR0874255DOI10.1088/0305-4470/20/2/019
- Sagan, H., Introduction to the calculus of variations, 1992, Dover, (1992) MR1210325
- Simmons, G. F., Krantz, S. G., Differential Equations: Theory, Technique, and Practice, 2006, McGraw-Hill, (2006)
- Smith, D., Variational methods in optimization, 1998, Dover, (1998) Zbl0918.49001
- Stephani, H., Kramer, D., MacCallum, M. A. H., Hoenselaers, C., Herlt, E., Exact Solutions of Einstein's Field Equations, 2003, Cambridge University Press, (2003) Zbl1057.83004MR2003646
- Stirzaker, D., Elementary probability, 2003, Cambridge University Press, (2003) Zbl1071.60002MR1998578
- Sussmann, H. J., Willems, J. C., 10.1109/37.588098, IEEE Control Systems, 17, 1997, 32-44, (1997) DOI10.1109/37.588098
- Taylor, E. F., 10.1119/1.1555874, Am. J. Phys., 71, 5, 2003, 423-425, (2003) DOI10.1119/1.1555874
- Taylor, J. R., Classical mechanics, 2005, University Science Books, (2005) Zbl1075.70002
- Thornton, S. T., Marion, J. B., Classical Dynamics of Particles and Systems, 2004, Brooks/Cole, (2004)
- Troutman, J. L., Variational Calculus and Optimal Control: Optimization With Elementary Convexity, 1996, Springer Verlag, (1996) Zbl0865.49001MR1363262
- Brunt, B. Van, The calculus of variations, 2004, Springer Verlag, (2004) MR2004181
- Wang, Q. A., 10.1007/s10509-006-9202-0, Astrophysics and Space Sciences, 305, 2006, 273-281, (2006) DOI10.1007/s10509-006-9202-0
- Whittaker, E. T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th. ed, 1937, Dover, (1937) MR0010813
- Williams, R. M., 10.1016/S0920-5632(97)00355-1, Nucl. Phys. Proc. Suppl., 57, 1997, 73-81, (1997) Zbl0976.83506MR1480185DOI10.1016/S0920-5632(97)00355-1
- Wong, J. S. W., 10.1137/1017036, SIAM Rev., 17, 2, 1975, 339-360, (1975) Zbl0295.34026MR0367368DOI10.1137/1017036
- Zaslavski, A. J., Turnpike properties in the calculus of variations and optimal control, 2006, Springer Verlag, (2006) Zbl1100.49003MR2164615
- Zeidler, E., Nonlinear functional analysis and its applications, Vol. III: Variational methods and optimization, 1986, Springer Verlag, (1986)
- Zloshchastiev, K. G., 10.1088/0305-4470/31/28/021, J. Phys. A: Math. Gen., 31, 1998, 6081-6085, (1998) Zbl0954.81046DOI10.1088/0305-4470/31/28/021
- Zwiebach, B., A First Course in String Theory, 2004, Cambridge University Press, (2004) Zbl1072.81001MR2069234
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.