Associative and Lie deformations of Poisson algebras

Elisabeth Remm

Communications in Mathematics (2012)

  • Volume: 20, Issue: 2, page 117-136
  • ISSN: 1804-1388

Abstract

top
Considering a Poisson algebra as a nonassociative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this nonassociative algebra. We give a natural interpretation of deformations which preserve the underlying associative structure and of deformations which preserve the underlying Lie algebra and we compare the associated cohomologies with the Poisson cohomology parametrizing the general deformations of Poisson algebras.

How to cite

top

Remm, Elisabeth. "Associative and Lie deformations of Poisson algebras." Communications in Mathematics 20.2 (2012): 117-136. <http://eudml.org/doc/251397>.

@article{Remm2012,
abstract = {Considering a Poisson algebra as a nonassociative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this nonassociative algebra. We give a natural interpretation of deformations which preserve the underlying associative structure and of deformations which preserve the underlying Lie algebra and we compare the associated cohomologies with the Poisson cohomology parametrizing the general deformations of Poisson algebras.},
author = {Remm, Elisabeth},
journal = {Communications in Mathematics},
keywords = {Poisson algebras; deformations; operads; cohomology; Poisson structures; deformations; Poisson cohomology},
language = {eng},
number = {2},
pages = {117-136},
publisher = {University of Ostrava},
title = {Associative and Lie deformations of Poisson algebras},
url = {http://eudml.org/doc/251397},
volume = {20},
year = {2012},
}

TY - JOUR
AU - Remm, Elisabeth
TI - Associative and Lie deformations of Poisson algebras
JO - Communications in Mathematics
PY - 2012
PB - University of Ostrava
VL - 20
IS - 2
SP - 117
EP - 136
AB - Considering a Poisson algebra as a nonassociative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this nonassociative algebra. We give a natural interpretation of deformations which preserve the underlying associative structure and of deformations which preserve the underlying Lie algebra and we compare the associated cohomologies with the Poisson cohomology parametrizing the general deformations of Poisson algebras.
LA - eng
KW - Poisson algebras; deformations; operads; cohomology; Poisson structures; deformations; Poisson cohomology
UR - http://eudml.org/doc/251397
ER -

References

top
  1. Doubek, M., Markl, M., Zima, P., Deformation theory (lecture notes), Arch. Math. (Brno), 43, 5, 2007, 333-371, (2007) Zbl1199.13015MR2381782
  2. Dufour, J.-P., Formes normales de structures de Poisson, Symplectic geometry and mathematical physics (Aix-en-Provence), 1990, 129-135, Progr. Math. 99, Birkhuser Boston, Boston, MA (1991). (1990) MR1156537
  3. Godbillon, C., Géométrie différentielle et mécanique analytique, 1969, Hermann Editeurs. Collection Méthodes, (1969) MR0242081
  4. Goze, M., Remm, E., 2-dimensional algebras, Afr. J. Math. Phys., 10, 1, 2011, 81-91, Corrected version: arXiv:1205.1221 [math.RA]. (2011) MR2845269
  5. Goze, M., Remm, E., Contact structures on Lie algebras, 2012, Preprint Mulhouse, (2012) 
  6. Goze, M., Remm, E., 10.1142/S0219498804000915, J. Algebra Appl, 3, 4, 2004, 345-365, (2004) Zbl1062.17010MR2114414DOI10.1142/S0219498804000915
  7. Goze, M., Remm, E., 10.1016/j.jalgebra.2008.01.024, J. Algebra, 320, 1, 2008, 294-317, (2008) MR2417990DOI10.1016/j.jalgebra.2008.01.024
  8. Goze, N., Poisson structures associated with rigid Lie algebras, Journal of Generalized Lie theory and Applications, 10, 2010, (2010) 
  9. Goze, N., Remm, E., 10.1016/j.jalgebra.2011.09.011, J. Algebra, 348, 2011, 14-36, (2011) MR2852229DOI10.1016/j.jalgebra.2011.09.011
  10. Kontsevich, M., Deformation quantization of Poisson manifold I, arXiv:q-alg/9709040. MR2062626
  11. Lichnerowicz, A., Les variétés de Poisson et leurs algèbres de Lie associées. (French), J. Differential Geometry, 12, 2, 1977, 253-300, (1977) MR0501133
  12. Loday, J.-L., Algebraic operads, 2011, Preprint IRMA Strasbourg, (2011) 
  13. Markl, M., Remm, E., 10.1016/j.jalgebra.2005.09.018, J. Algebra, 299, 1, 2006, 171-189, (2006) Zbl1101.18004MR2225770DOI10.1016/j.jalgebra.2005.09.018
  14. Markl, M., Remm, E., (Non-)Koszulness of operads for n-ary algebras, galgalim and other curiosities, arXiv:0907.1505. 
  15. Markl, M., Shnider, S., Stasheff, J., Operads in algebra, topology and physics, 2002, Mathematical Surveys and Monographs, 96. American Mathematical Society, Providence, RI, (2002) Zbl1017.18001MR1898414
  16. Pichereau, A., 10.1016/j.jalgebra.2005.10.029, J. Algebra, 299, 2, 2006, 747-777, (2006) Zbl1113.17009MR2228339DOI10.1016/j.jalgebra.2005.10.029
  17. Remm, E., On the NonKoszulity of ternary partially associative Operads, Proceedings of the Estonian Academy of Sciences, 59, 4, 2010, 355-363, (2010) MR2752979
  18. Remm, E., Goze, M., 10.1016/j.jalgebra.2010.10.035, J. Algebra, 327, 2011, 13-30, (2011) Zbl1228.18007MR2746027DOI10.1016/j.jalgebra.2010.10.035
  19. Skosyrskii, V. G., Noncommutative Jordan algebras a under the condition that A ( + ) is associative, Translated from Sibirskii Mathematicheskii Zhurnal, 32, 6, 1991, 150-157, (1991) MR1156755
  20. Vaisman, Izu, Lectures on the geometry of Poisson manifolds, 1994, Progress in Mathematics 118, Birkäuser Verlag, Basel, viii+205 pp. (1994) Zbl0810.53019MR1269545

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.