Deformation Theory (Lecture Notes)

M. Doubek; Martin Markl; Petr Zima

Archivum Mathematicum (2007)

  • Volume: 043, Issue: 5, page 333-371
  • ISSN: 0044-8753

Abstract

top
First three sections of this overview paper cover classical topics of deformation theory of associative algebras and necessary background material. We then analyze algebraic structures of the Hochschild cohomology and describe the relation between deformations and solutions of the corresponding Maurer-Cartan equation. In Section  we generalize the Maurer-Cartan equation to strongly homotopy Lie algebras and prove the homotopy invariance of the moduli space of solutions of this equation. In the last section we indicate the main ideas of Kontsevich’s proof of the existence of deformation quantization of Poisson manifolds.

How to cite

top

Doubek, M., Markl, Martin, and Zima, Petr. "Deformation Theory (Lecture Notes)." Archivum Mathematicum 043.5 (2007): 333-371. <http://eudml.org/doc/250171>.

@article{Doubek2007,
abstract = {First three sections of this overview paper cover classical topics of deformation theory of associative algebras and necessary background material. We then analyze algebraic structures of the Hochschild cohomology and describe the relation between deformations and solutions of the corresponding Maurer-Cartan equation. In Section  we generalize the Maurer-Cartan equation to strongly homotopy Lie algebras and prove the homotopy invariance of the moduli space of solutions of this equation. In the last section we indicate the main ideas of Kontsevich’s proof of the existence of deformation quantization of Poisson manifolds.},
author = {Doubek, M., Markl, Martin, Zima, Petr},
journal = {Archivum Mathematicum},
keywords = {deformation; Maurer-Cartan equation; strongly homotopy Lie algebra; deformation quantization; deformation; Maurer-Cartan equation; strongly homotopy Lie algebra; deformation quantization},
language = {eng},
number = {5},
pages = {333-371},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Deformation Theory (Lecture Notes)},
url = {http://eudml.org/doc/250171},
volume = {043},
year = {2007},
}

TY - JOUR
AU - Doubek, M.
AU - Markl, Martin
AU - Zima, Petr
TI - Deformation Theory (Lecture Notes)
JO - Archivum Mathematicum
PY - 2007
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 043
IS - 5
SP - 333
EP - 371
AB - First three sections of this overview paper cover classical topics of deformation theory of associative algebras and necessary background material. We then analyze algebraic structures of the Hochschild cohomology and describe the relation between deformations and solutions of the corresponding Maurer-Cartan equation. In Section  we generalize the Maurer-Cartan equation to strongly homotopy Lie algebras and prove the homotopy invariance of the moduli space of solutions of this equation. In the last section we indicate the main ideas of Kontsevich’s proof of the existence of deformation quantization of Poisson manifolds.
LA - eng
KW - deformation; Maurer-Cartan equation; strongly homotopy Lie algebra; deformation quantization; deformation; Maurer-Cartan equation; strongly homotopy Lie algebra; deformation quantization
UR - http://eudml.org/doc/250171
ER -

References

top
  1. André M., Method simpliciale en algèbre homologique et algébre commutative, Lecture Notes in Mathematics 32, Springer, Berlin, 1967. (1967) MR0214644
  2. Atiyah M. F., MacDonald I. G., Introduction to Commutative Algebra, Addison-Wesley, 1969. Fifth printing. (1969) Zbl0175.03601MR0242802
  3. Balavoine D., Deformation of algebras over a quadratic operad, In J. D. Stasheff J.-L. Loday and A. A. Voronov, editors, Operads: Proceedings of Renaissance Conferences, volume 202 of Contemporary Mathematics (1997), 167–205. (1997) MR1436922
  4. Balavoine D., Homology and cohomology with coefficients, of an algebra over a quadratic operad, J. Pure Appl. Algebra 132 91998), 221–258. Zbl0967.18004MR1642086
  5. Bayen F., Flato M., Fronsdal C., Lichnerowiscz A., Sternheimer D., Deformation and quantization I,II, Ann. Physics 111 (1978), 61–151. (1978) MR0496157
  6. Ciocan-Fontanine I., Kapranov M. M., Derived Quot schemes, Ann. Sci. Ecole Norm. Sup. 34(3), (2001), 403–440. Zbl1050.14042MR1839580
  7. Ciocan-Fontanine I., Kapranov M. M., Derived Hilbert schemes, J. Amer. Math. Soc. 15 (4) (2002), 787–815. Zbl1074.14003MR1915819
  8. Félix Y., Dénombrement des types de @ f o n t @ b o l d k -homotopie. Théorie de la déformation, Bulletin Soc. Math. France 108 (3), 1980. (1980) 
  9. Fox T. F., The construction of cofree coalgebras, J. Pure Appl. Algebra 84 (2) (1993), 191–198. (1993) Zbl0810.16038MR1201051
  10. Fox T. F., An introduction to algebraic deformation theory, J. Pure Appl. Algebra 84 (1993), 17–41. (1993) Zbl0772.18006MR1195416
  11. Fox T. F., Markl M., Distributive laws, bialgebras, and cohomology, In: J.-L. Loday, J. D. Stasheff, A. A. Voronov, editors, Operads: Proceedings of Renaissance Conferences, volume 202 of Contemporary Math., Amer. Math. Soc. (1997), 167–205. (1997) Zbl0866.18008MR1436921
  12. Gerstenhaber M., The cohomology structure of an associative ring, Ann. of Math. 78 (2) (1963), 267–288. (1963) Zbl0131.27302MR0161898
  13. Gerstenhaber M., On the deformation of rings and algebras, Ann. of Math. 79 (1), (1964), 59–104. (1964) Zbl0123.03101MR0171807
  14. Gerstenhaber M., On the deformation of rings and algebras II, Ann. of Math. 88 (1966), 1–19. (1966) Zbl0147.28903MR0207793
  15. Getzler E., Lie theory for nilpotent L algebras, preprint math.AT/0404003, April 2004. MR2521116
  16. Hartshorne R.,., Algebraic Geometry, volume 52 of Graduate Texts in Mathematics. Springer-Verlag, 1977. (1977) Zbl0367.14001MR0463157
  17. Hazewinkel M., Cofree coalgebras and multivariable recursiveness, J. Pure Appl. Algebra 183 (1-3), (2003), 61–103. Zbl1048.16022MR1992043
  18. Hinich V., Tamarkin’s proof of Kontsevich formality theorem, Forum Math. 15 (2003), 591–614. Zbl1081.16014MR1978336
  19. Hinich V., Schechtman V. V., Homotopy Lie algebras, Adv. Soviet Math. 16 (2) (1993), 1–28. (1993) Zbl0823.18004MR1237833
  20. Kadeishvili T. V., O kategorii differentialnych koalgebr i kategorii A ( ) -algebr, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR, 77 (1985), 50–70. In Russian. (1985) MR0862919
  21. Kajiura H., Stasheff J., Homotopy algebras inspired by clasical open-closed field string theory, Comm. Math. Phys. 263 (3) (2006), 553–581. MR2211816
  22. Kobayashi S., Nomizu K., Foundations of Differential Geometry, volume I, Interscience Publishers, 1963. (1963) Zbl0119.37502MR0152974
  23. Kontsevich M., Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (3) (2003), 157–216. Zbl1058.53065MR2062626
  24. Kontsevich M., Soibelman Y., Deformations of algebras over operads and the Deligne conjecture, In: Dito, G. et al., editor, Conférence Moshé Flato 1999: Quantization, deformation, and symmetries, number 21 in Math. Phys. Stud., pages 255–307. Kluwer Academic Publishers, 2000. (1999) MR1805894
  25. Lada T., Markl M., Strongly homotopy Lie algebras, Comm. Algebra 23 (6) (1995), 2147–2161. (1995) Zbl0999.17019MR1327129
  26. Lada T., Stasheff J. D., Introduction to sh Lie algebras for physicists, Internat. J. Theoret. Phys. 32 (7) (1993), 1087–1103. (1993) Zbl0824.17024MR1235010
  27. Mac Lane S., Homology, Springer-Verlag, 1963. (1963) 
  28. Mac Lane S., Natural associativity and commutativity, Rice Univ. Stud. 49 (1) (1963), 28–46. (1963) MR0170925
  29. Mac Lane S., Categories for the Working Mathematician, Springer-Verlag, 1971. (1971) Zbl0232.18001MR0354798
  30. Markl M., A cohomology theory for A ( m ) -algebras and applications, J. Pure Appl. Algebra 83 (1992), 141–175. (1992) Zbl0801.55004MR1191090
  31. Markl M., Cotangent cohomology of a category and deformations, J. Pure Appl. Algebra 113 (2) (1996), 195–218. (1996) MR1415558
  32. Markl M., Homotopy algebras are homotopy algebras, Forum Math. 16 (1) (2004), 129–160. Zbl1067.55011MR2034546
  33. Markl M., Intrinsic brackets and the L -deformation theory of bialgebras, preprint math.AT/0411456, November 2004. MR2812919
  34. Markl M., Remm E., Algebras with one operation including Poisson and other Lie-admissible algebras, J. Algebra 299 (2006), 171–189. Zbl1101.18004MR2225770
  35. Markl M., Shnider S., Stasheff J. D., Operads in Algebra, Topology and Physics, volume 96 of Mathematical Surveys and Monographs, Amer. Math. Soc. Providence, Rhode Island, 2002. Zbl1017.18001MR1898414
  36. Nijenhuis A., Richardson J., Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc. 72 (1966), 1–29. (1966) Zbl0136.30502MR0195995
  37. Quillen D., Homotopical Algebra, Lecture Notes in Math. 43, Springer-Verlag, 1967. (1967) Zbl0168.20903MR0223432
  38. Quillen D., On the (co-)homology of commutative rings, Proc. Symp. Pure Math. 17 (1970), 65–87. (1970) Zbl0234.18010MR0257068
  39. Serre J.-P., Lie Algebras and Lie Groups, Benjamin, 1965. Lectures given at Harward University. (1965) Zbl0132.27803MR0218496
  40. Smith J. R., Cofree coalgebras over operads, Topology Appl. 133 (2) (2003), 105–138. Zbl1032.18004MR1997960
  41. Stasheff J. D., Homotopy associativity of H-spaces I,II, Trans. Amer. Math. Soc. 108 (1963), 275–312. (1963) Zbl0114.39402MR0158400
  42. Sullivan D., Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331. (1977) Zbl0374.57002MR0646078
  43. Tamarkin D. E., Another proof of M. Kontsevich formality theorem, preprint math.QA/ 9803025, March 1998. (1998) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.