Thomas Harriot on Combinations

Ian Maclean

Revue d'histoire des mathématiques (2005)

  • Volume: 11, Issue: 1, page 57-88
  • ISSN: 1262-022X

Abstract

top
Thomas Harriot (1560?–1621) is known today as an innovative mathematician and a natural philosopher with wide intellectual horizons. This paper will look at his interest in combinations in three contexts: language (anagrams), natural philosophy (the question of atomism) and mathematics (number theory), in order to assess where to situate him in respect of three current historiographical debates: 1) whether there existed in the late Renaissance two opposed mentalities, the occult and the scientific; 2) whether all mathematical science was clearly demarcated from natural philosophy at that time; and 3) whether all enquiry into nature (including that pursued through mathematics) entailed a consideration of the attributes of God Himself. The paper argues from the case of Harriot that as a man capable of highly abstract mathematical thought, his work on combinations of all kinds is scarcely marked at all by the social, political and religious context from which it arose (which is not to say that his work on alchemy or on practical mathematics is unmarked in the same way), and that he, like many of his contemporaries, was capable of compartmentalising his mind, and of according different modes and degrees of intellectual commitment to different areas of his mental universe.

How to cite

top

Maclean, Ian. "Thomas Harriot on Combinations." Revue d'histoire des mathématiques 11.1 (2005): 57-88. <http://eudml.org/doc/252029>.

@article{Maclean2005,
abstract = {Thomas Harriot (1560?–1621) is known today as an innovative mathematician and a natural philosopher with wide intellectual horizons. This paper will look at his interest in combinations in three contexts: language (anagrams), natural philosophy (the question of atomism) and mathematics (number theory), in order to assess where to situate him in respect of three current historiographical debates: 1) whether there existed in the late Renaissance two opposed mentalities, the occult and the scientific; 2) whether all mathematical science was clearly demarcated from natural philosophy at that time; and 3) whether all enquiry into nature (including that pursued through mathematics) entailed a consideration of the attributes of God Himself. The paper argues from the case of Harriot that as a man capable of highly abstract mathematical thought, his work on combinations of all kinds is scarcely marked at all by the social, political and religious context from which it arose (which is not to say that his work on alchemy or on practical mathematics is unmarked in the same way), and that he, like many of his contemporaries, was capable of compartmentalising his mind, and of according different modes and degrees of intellectual commitment to different areas of his mental universe.},
author = {Maclean, Ian},
journal = {Revue d'histoire des mathématiques},
keywords = {renaissance; combinations; anagrams; atomism; number theory},
language = {eng},
number = {1},
pages = {57-88},
publisher = {Société mathématique de France},
title = {Thomas Harriot on Combinations},
url = {http://eudml.org/doc/252029},
volume = {11},
year = {2005},
}

TY - JOUR
AU - Maclean, Ian
TI - Thomas Harriot on Combinations
JO - Revue d'histoire des mathématiques
PY - 2005
PB - Société mathématique de France
VL - 11
IS - 1
SP - 57
EP - 88
AB - Thomas Harriot (1560?–1621) is known today as an innovative mathematician and a natural philosopher with wide intellectual horizons. This paper will look at his interest in combinations in three contexts: language (anagrams), natural philosophy (the question of atomism) and mathematics (number theory), in order to assess where to situate him in respect of three current historiographical debates: 1) whether there existed in the late Renaissance two opposed mentalities, the occult and the scientific; 2) whether all mathematical science was clearly demarcated from natural philosophy at that time; and 3) whether all enquiry into nature (including that pursued through mathematics) entailed a consideration of the attributes of God Himself. The paper argues from the case of Harriot that as a man capable of highly abstract mathematical thought, his work on combinations of all kinds is scarcely marked at all by the social, political and religious context from which it arose (which is not to say that his work on alchemy or on practical mathematics is unmarked in the same way), and that he, like many of his contemporaries, was capable of compartmentalising his mind, and of according different modes and degrees of intellectual commitment to different areas of his mental universe.
LA - eng
KW - renaissance; combinations; anagrams; atomism; number theory
UR - http://eudml.org/doc/252029
ER -

References

top
  1. [1] P. Apian, Eyn New Unnd wolgegründte underweysung aller Kauffmannß Rechnung, 1527 
  2. [2] Aristotle, Opera omnia, Guillaume Duval, 1619 
  3. [3] W. J. Ashworth, Natural history and the emblematic world view, in: Reappraisals of the Scientific Revolution (David C.LindbergRobert S.Westman ed.), Cambridge University Press, Cambridge, 1990, p. 303-332 
  4. [4] F. Bacon, The Advancement of Learning, in: The Oxford Francis Bacon (MichaelKiernan ed.), IV, Oxford University Press, Oxford, 2000, p. 303-332 
  5. [5] R. Barnes, Prophecy and Gnosis: Apocalypticism in the Wake of the Lutheran Reformation, Stanford University Press, 1988 
  6. [6] G. Batho, Thomas Harriot and the Northumberland household, in: Thomas Harriot: an Elizabethan Man of Science (RobertFox ed.), Ashgate, Aldershot, 1999, p. 28-47 
  7. [7] G. Batho, Thomas Harriot’s Manuscripts, in: Thomas Harriot: an Elizabethan Man of Science (RobertFox ed.), Ashgate, Aldershot, 1999, p. 286-98 
  8. [8] J. Bennett, “The Mechanics’ philosophy and the mechanical philosophy”, History of Science 24 (1986), p. 1-28 
  9. [9] J. Bennett, Instruments, mathematics, and natural knowledge: Thomas Harriot’s place on the map of learning, in: Thomas Harriot: an Elizabethan Man of Science (RobertFox ed.), Ashgate, Aldershot, 1999, p. 137-52 
  10. [10] L. Bianchi, Censure et liberté intellectuelle à l’Université de Paris (xiiie–xiv siècles), Belles Lettres, 1999 
  11. [11] T. Billon, Le bon ange de la France, rapportant soixante-deux anagrammes en forme de presages, voeux et benedictions, le tout heureusement tiré sans addition, diminution ou mutation de lettres du tres-fortuné, tres-grand et tres-auguste nom de Louis XIII de Bourbon, roi de France et de Navarre; ensemble de tres-haute et tres-illustre princesse Anne d’Austrie, infante d’Espagne, sur l’heureux mariage de Leurs Majestés, 1613 
  12. [12] T. Billon, Sibylla gallica, anagrammaticis magna praedicens oraculis, idque duabus et ultra centuriis, stylo partim soluto, partim versificato, nulla mutata, dempta vel addita littera, in gratiam christianissmi principis Lodovici XIII Galliae et Navarrae regis felicissimi, necnon Annae Mauritiae de Austria, reginae, 1616, 2nd ed. 1624 
  13. [13] G. Cardano, Opera omnia, Charles Spon, 1663, 10 vols 
  14. [14] W. Cheeke, Anagrammata, et chron-anagrammata regia, 1613 
  15. [15] M. Clagett, Oresme and the Medieval Geometry of Qualities and Motions, University of Wisconsin Press, 1968 MR258571
  16. [16] S. Clucas, Corpuscular matter theory and the Northumberland circle, in: Medieval and Early Modern Corpuscular Matter Theories (Christoph H.LüthyJohn E.MurdochWilliam R.Newman ed.), Brill, Leiden, 2001, p. 181-201 
  17. [17] S. Clucas, Thomas Harriot and the field of knowledge in the English Renaissance, in: Thomas Harriot: an Elizabethan Man of Science (RobertFox ed.), Ashgate, Aldershot, 1999, p. 93-136 
  18. [18] B. P. Copenhaver, Astrology and magic, in: The Cambridge History of Renaissance Philosophy (Charles B.SchmittQuentinSkinnerEckhardKessler ed.), Cambridge University Press, Cambridge, 1988, p. 264-300 
  19. [19] A. Cunningham, “The identity of natural philosophy: a response to Edward Grant”, Early Science and Medicine 5 (2000), p. 259-78, 299-300 
  20. [20] M. Curl, The Anagram Book, Robert Hale, 1982 
  21. [21] J. Dan, The Kabbalah of Johannes Reuchlin and its historical significance, in: The Christian Kabbalah (JosephDan ed.), Harvard College Library, Cambridge, Mass., 1997, p. 55-96 
  22. [22] A. Edwards, Pascal’s Arithmetical Triangle, Charles Griffin/Oxford University Press, 1987 Zbl1032.01013MR930876
  23. [23] R. French & A. Cunningham, Before Science: the Invention of the Friars’ Natural Philosophy, Scholar, 1996 
  24. [24] M. Folkerts, E. Knobloch & K. Reich, Mass, Zahl und Gewicht: Mathematik als Schlüssel zu Weltverständnis und Weltbeherrschung, Harrassowitz, 2001 Zbl0685.01001
  25. [25] J. Fleming, Graffiti and the Writing Arts of Early Modern England, Reaktion, 2001 
  26. [26] H. Gatti, The natural philosophy of Thomas Harriot, in: Thomas Harriot: an Elizabethan man of Science (RobertFox ed.), Ashgate, Aldershot, 1999, p. 64-92 
  27. [27] C. Gilly, “Zwischen Erfahrung und Spekulation: Theodor Zwinger und die religiöse und kulturelle Krise seiner Zeit”, Baseler Zeitschrift für Geschichte und Altertumskunde 79 (1979), p. 125-223 
  28. [28] E. Grant, “God and natural philosophy: the late Middle Ages and Sir Isaac Newton”, Early Science and Medicine 5 (2000), p. 279-98 
  29. [29] T. Harriot, British Library Additional Manuscripts 6782, 6785, 6786, 6787, 6789, 
  30. [30] J. Henry, “Thomas Harriot and atomism: a reappraisal”, History of Science 20 (1982), p. 267-96 
  31. [31] J. Hucher, De prognosi, 1602 
  32. [32] J. Jacquot, Harriot, Hill, Warner and the new philosophy, in: Thomas Harriot. Renaissance Scientist (J.W.Shirley ed.), Clarendon Press, Oxford, 1974, p. 137-8 MR490730
  33. [33] L. Jardine, Experientia literata or Novum Organum, in: Francis Bacon’s Legacy of Texts (William A.Sessions ed.), Amer. Math. Soc. Press, New York, 1990, p. 47-67 
  34. [34] N. Jardine & M. Frasca-Spada, “Splendours and miseries of the science wars”, Studies in the History and Philosophy of Science 28 (1997), p. 219-35 
  35. [35] D. Kahn, L’interpétation alchimique de la Genèse chez Joseph Du Chesne dans le contexte de ses doctrines alchimiques et cosmologiques, in: Scientiae et artes (BarbaraMahlmann-Bauer ed.), Harrassowitz, Wiesbaden, 2004, p. 641-92 
  36. [36] Z. Kaluza, “Le De universali reali de Jean de Maisonneuve et les Epicurei litterales”, Freiburger Zeitschrift für Philosophie et Theologie 35 (1986), p. 465-516 
  37. [37] Z. Kaluza, Les querelles doctrinales à Paris: nominalistes et réalistes aux confins du xive et du xve siècles, P. Lubrina, 1988 
  38. [38] J. Kepler, Dissertatio cum nuncio sidereo nuper apud mortales misso a Galilaeo Galilaeo, 1610 
  39. [39] S. Kusukawa, ‘Aspectio divinorum operum’: Melanchthon and astronogy for Lutheran medics, in: Medecine and the Reformation (Ole PeterGrellAndrewCunningham ed.), Routledge, London & New York, 1993, p. 33-56 
  40. [40] G. Le Blanc, Libellus de ratione anagrammatismi, 1586 
  41. [41] A. Libavius, Examen novae philosophiae, quae veteri abrogandae opponitur, 1615 
  42. [42] C. Lüthy, J. E. Murdoch & W. R. Newman, Medieval and Early Modern Corpuscular Matter Theories, Brill, 2001 
  43. [43] D. C. Lindberg & R. L. Numbers, When Science and Christianity Meet, Chicago University Press, 2003 
  44. [44] C. Lohr, Possibility and reality in Suárez’s Disputationes metaphysicae, in: Res et verba in the Renaissance (EckhardKesslerIanMaclean ed.), Harrassowitz, Wiesbaden, 2002, p. 273- 86 
  45. [45] I. Maclean, White crows, greying hair and eyelashes: problems for natural historians in the reception of Aristotle’s logic and biology from Pomponazzi to Bacon, in: Historia: Empiricism and Erudition in Early Modern Europe Cambridge (GiannaPomataNancySiraisi ed.), MIT Press, Cambridge Mass., forthcoming 
  46. [46] I. Maclean, Logic, Signs and Nature in the Renaissance: the Case of Learned Medicine, Cambridge University Press, 2001 
  47. [47] I. Maclean, Cardano on the immortality of the soul, in: Cardano e la tradizione dei saperi (GuidoCanzianiMarialuisaBaldi ed.), Frano Angeli, Milan, 2004, p. 191-208 
  48. [48] I. Maclean, Interpretation and Meaning in the Renaissance: the Case of Law, Cambridge University Press, 1992 
  49. [49] S. Mandelbrote, The religion of Thomas Harriot, in: Thomas Harriot: an Elizabethan Man of Science (RobertFox ed.), Ashgate, Aldershot, 1999, p. 246-79 
  50. [50] A. Marr, “‘Curious and useful buildings’; the mathematical model of Sir Clement Edmondes”, Bodleian Library Record 18 (2003), p. 108-50 
  51. [51] J. Martini, Exercitationum metaphysicarum libri duo, 1608 
  52. [52] G. Mathieu-Castellani, “Nombre, lettre, figure à la Renaissance”, Revue des sciences humaines 179 (1980), p. 1-6 
  53. [53] P. Melanchthon, Axiomata physica, MS Vatican Pal. Lat., 1038 
  54. [54] A. E. Moyer, “The demise of the quadrivium and the beginning of the Scientific Revolution: Boethius in the sixteenth century”, Intellectual News 10 (2002), p. 69-77 
  55. [55] J. E. Murdoch, Album of Science: Antiquity and the Middle Ages, Scribner, 1984 
  56. [56] B. Nance, Turquet de Mayerne as Baroque Physician: the Art of Medical Portraiture, Rodolpi, 2001 
  57. [57] P. d. Nolhac, Ronsard et l’humanisme, Champion, 1921 
  58. [58] J. D. North, Thomas Harriot and the first telescopic observations of sunspots, in: Thomas Harriot. Renaissance Scientist (J.W.Shirley ed.), Clarendon Press, Oxford, 1974, p. 137-8 MR485105
  59. [59] J. D. North, Stars and atoms, in: Thomas Harriot: an Elizabethan Man of Science (RobertFox ed.), Ashgate, Aldershot, 1999, p. 186-28 
  60. [60] I. Pantin, “La représentation des mathématiques chez Jacques Peletier du Mans: Cosmos hiéroglyphique ou ordre rhétorique?”, Rhetorica 20 (2002), p. 375-90 
  61. [61] B. Pereira, De communibus omnium rerum naturalium principiis et affectionibus, 1576 
  62. [62] S. Pumfrey, “Harriot: a patronage studies analysis”, Bulletin of the Society of Renaissance Studies 21 (2003), p. 11-22 
  63. [63] N. Reusnerus, Anagrammatographia [...] accessit Gulielmi Blanci Libellus de ratione anagrammatismi, Elias Reusnerus, 1602 
  64. [64] J. J. Roche, Harriot, Oxford, and twentieth-century historiography, in: Thomas Harriot: an Elizabethan Man of Science (RobertFox ed.), Ashgate, Aldershot, 1999, p. 246-79 
  65. [65] P. d. Ronsard, Sonnets pour Hélène, Droz/Minard, 1970 
  66. [66] E. Rosen, Harriot’s science: the intellectual background, in: Thomas Harriot. Renaissance scientist (J.W.Shirley ed.), Clarendon Press, Oxford, 1974, p. 5-18 MR484999
  67. [67] S. Sanctorius, Methodi vitandorum errorum, 1630 
  68. [68] M. Seltman, Harriot’s algebra: reputation and reality, in: Thomas Harriot: an Elizabethan Man of Science (RobertFox ed.), Ashgate, Aldershot, 1999, p. 153-85 Zbl0883.01035
  69. [69] E. Serene, Demonstrative science, in: The Cambridge History of Later Medieval Philosophy (A.K. NormanKretzmannJanPinborg ed.), Cambridge University Press, Cambridge, 1982, p. 496-517 
  70. [70] J. W. Shirley, Thomas Harriot: a Biography, Clarendon Press, 1983 MR720717
  71. [71] M. Stewart, “Libertas philosophandi: from natural to speculative philosophy”, Australian Journal of Politics and History 40 (1994), p. 29-46 
  72. [72] M. Stifel, Ein Rechen Büchlin. Vom EndChrist, 1532 
  73. [73] M. Stifel, Arithmetica integra, 1544 
  74. [74] M. Stifel, Ein sehr wunderbarliche wortrechnung sampt einer merckliche erklerung etlicher zalen Danielis und der Offenbarung Sanct Johannis, 1553 
  75. [75] R. Sutton, “The phrase ‘libertas philosophandi’”, Journal of the History of Ideas 14 (1953), p. 310-16 
  76. [76] N. Taurellus, Alpes caesae, hoc est, Andreae Caesalpini Itali monstrosa et superba dogmata discussa et excussa, 1597 
  77. [77] N. Torporley, “A synopsis of the controversie of Atoms, published as an appendix to Jean Jacquot, Thomas Harriot’s reputation for impiety”, Notes and Records of the Royal Society of London 9 (1952), p. 164-87 
  78. [78] H. Trevor Roper, Harriot’s physician: Théodore de Mayerne, in: Thomas Harriot: an Elizabethan Man of Science (RobertFox ed.), Ashgate, Aldershot, 1999, p. 48-63 
  79. [79] A. Vesalius, Corporis humani fabrica, 1543 
  80. [80] B. Vickers, Occult and Scientific Mentalities in the Renaissance, Cambridge University Press, 1984 
  81. [81] B. d. Vigenère, Traicté des chiffres, ou secretes manieres d’escrire, 1587 
  82. [82] J. Wippel, “The condemnations of 1270 and 1277 at Paris”, Journal of Medieval and Renaissance Studies 7 (1977), p. 169-201 
  83. [83] F. A. Yates, The Occult Philosophy in the Elizabethan Age, Routledge, 1979 
  84. [84] P. Zumthor, “D’une pensée littérale”, Revue des sciences humaines 179 (1980), p. 7-21 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.