Algebraic Geometry between Noether and Noether — a forgotten chapter in the history of Algebraic Geometry
Revue d'histoire des mathématiques (1997)
- Volume: 3, Issue: 1, page 1-48
- ISSN: 1262-022X
Access Full Article
topAbstract
topHow to cite
topGray, Jeremy. "Algebraic Geometry between Noether and Noether — a forgotten chapter in the history of Algebraic Geometry." Revue d'histoire des mathématiques 3.1 (1997): 1-48. <http://eudml.org/doc/252109>.
@article{Gray1997,
abstract = {Mathematicians and historians generally regard the modern period in algebraic geometry as starting with the work of Kronecker and Hilbert. But the relevant papers by Hilbert are often regarded as reformulating invariant theory, a much more algebraic topic, while Kronecker has been presented as the doctrinaire exponent of finite, arithmetical mathematics. Attention is then focused on the Italian tradition, leaving the path to Emmy Noether obscure and forgotten.There was, however, a steady flow of papers responding to the work of both Hilbert and Kronecker. The Hungarian mathematicians Gyula (Julius) König and József Kürschák, the French mathematicians Jules Molk and Jacques Hadamard, Emanuel Lasker and the English school teacher F.S.Macaulay all wrote extensively on the subject. This work is closely connected to a growing sophistication in the definitions of rings, fields and related concepts. The shifting emphases of their work shed light on how algebraic geometry owes much to both its distinguished founders, and how the balance was struck between algebra and geometry in the period immediately before Emmy Noether began her work.},
author = {Gray, Jeremy},
journal = {Revue d'histoire des mathématiques},
keywords = {algebraic geometry; Max Noether; Emmy Noether},
language = {eng},
number = {1},
pages = {1-48},
publisher = {Société mathématique de France},
title = {Algebraic Geometry between Noether and Noether — a forgotten chapter in the history of Algebraic Geometry},
url = {http://eudml.org/doc/252109},
volume = {3},
year = {1997},
}
TY - JOUR
AU - Gray, Jeremy
TI - Algebraic Geometry between Noether and Noether — a forgotten chapter in the history of Algebraic Geometry
JO - Revue d'histoire des mathématiques
PY - 1997
PB - Société mathématique de France
VL - 3
IS - 1
SP - 1
EP - 48
AB - Mathematicians and historians generally regard the modern period in algebraic geometry as starting with the work of Kronecker and Hilbert. But the relevant papers by Hilbert are often regarded as reformulating invariant theory, a much more algebraic topic, while Kronecker has been presented as the doctrinaire exponent of finite, arithmetical mathematics. Attention is then focused on the Italian tradition, leaving the path to Emmy Noether obscure and forgotten.There was, however, a steady flow of papers responding to the work of both Hilbert and Kronecker. The Hungarian mathematicians Gyula (Julius) König and József Kürschák, the French mathematicians Jules Molk and Jacques Hadamard, Emanuel Lasker and the English school teacher F.S.Macaulay all wrote extensively on the subject. This work is closely connected to a growing sophistication in the definitions of rings, fields and related concepts. The shifting emphases of their work shed light on how algebraic geometry owes much to both its distinguished founders, and how the balance was struck between algebra and geometry in the period immediately before Emmy Noether began her work.
LA - eng
KW - algebraic geometry; Max Noether; Emmy Noether
UR - http://eudml.org/doc/252109
ER -
References
top- [1] ATIYAH ( M.F.) and MACDONALD ( I.G.) [1969] Introduction to commutative algebra, Reading (MA) : Addison-Wesley, 1969. Zbl0175.03601MR242802
- [2] BAKER ( H.F.) [1938] Francis Sowerby Macaulay, The Journal of the London Mathematical Society, 13 (1938), pp. 157–160. MR1574145JFM64.0023.10
- [3] BIERMANN ( K.R.) [1973] Die Mathematik und ihre Dozenten an der Berliner Universität 1810–1920, Berlin: Akademie-Verlag, 1973. Zbl0208.28802MR437267
- [4] BLISS ( G.A.) [1923] The reduction of singularities of plane curves by birational transformation, Bulletin of the American Mathematical Society, 29 (1923), pp. 161–183. Zbl49.0264.01MR1560693JFM49.0264.01
- [5] BOURBAKI ( N.) [1965] Notice historique, in Éléments de mathématique: Algèbre commutative, ch. 7, Paris: Hermann, 1965. English transl., in Elements of mathematics: Commutative algebra, chap. 1–7, Berlin: Springer, 1989. Zbl0673.00001MR360549
- [6] BRILL ( A.) and NOETHER ( M.) [1874] Ueber die algebraischen Functionen und ihre Anwendung in der Geometrie, Mathematische Annalen, 7 (1874), pp. 269–310. JFM06.0251.01
- [7] BRILL ( A.) and NOETHER ( M.) [1894] Die Entwicklung der Theorie der algebraischen Functionen in älterer und neuerer Zeit, Jahresbericht der Deutschen Mathematiker-Vereinigung, 3 (1892–1893), pp. 107–566. JFM25.0070.01
- [8] BURAU ( W.) [1991] Koenig, Julius, in Biographical dictionary of mathematicians, New York: Macmillan, vol. 3, pp. 1268–1269.
- [9] CLEBSCH ( R.F.A.) and GORDAN ( P.) [1866] Theorie der Abelschen Functionen, Leipzig: Teubner, 1866.
- [10] CLEBSCH ( R.F.A.) [1876–1891] Vorlesungen über Geometrie, (F.Lindemann ed.), 2 vols., Teubner: Leipzig, 1876–1891.
- [11] CORRY ( L.) [1996] Modern algebra and the rise of mathematical structures, Basel: Birkhäuser, 1996. Zbl0858.01022MR1391720
- [12] Dedekind ( R.) [Werke 1] Gesammelte mathematische Werke, vol. 1, Braunschweig, 1930 (repr. New York: Chelsea, 1969). JFM58.0042.09
- [13] DEDEKIND ( R.) and WEBER ( H.) [1882] Theorie der algebraischen Functionen einer Veränderlichen, Journal für die reine und angewandte Mathematik, 92 (1882), pp. 181–290; repr. in [Dedekind Werke 1, pp. 238–350]. JFM14.0352.01
- [14] DIEUDONNÉ ( J.) [1974] Cours de géométrie algébrique, vol. 1, Paris: PUF, 1974. English transl., History of algebraic geometry, Monterey: Wadsworth, 1985.
- [15] EDWARDS ( H.M.) [1980] The genesis of ideal theory, Archive for History of Exact Sciences, 23 (1980), pp. 321–378. Zbl0472.01013MR608312
- [16] EDWARDS ( H.M.) [1990] Divisor theory, Boston-Basel: Birkhäuser, 1990. Zbl0689.12001MR1200892
- [17] EISENBUD ( D.) [1994] Commutative algebra with a view toward algebraic geometry, Berlin-Heidelberg: Springer, 1994. Zbl0819.13001MR1322960
- [18] GRAY ( J.J.) [1989] Algebraic geometry in the late nineteenth century, in D.E.Rowe and J.McCleary (eds.), The history of modern mathematics, vol. I, San Diego: Academic Press, 1989, pp. 361–385. MR1037803
- [19] HADAMARD ( J.) and KÜRSCHÁK ( J.) [1910-1911]Propriétés générales des corps et des variétés algébriques, Encyclopédie des sciences mathematiques pures et appliquées, I.2, Paris: Gauthier-Villars, 1910, 1911, pp. 233–385.
- [20] HANCOCK ( H.) [1902] Remarks on Kronecker’s modular systems, Compte rendu du deuxième Congrès international des mathématiciens (Paris, 1900), Paris: Gauthier-Villars, 1902, pp. 161–193. JFM32.0098.02
- [21] HANCOCK ( H.) [1931-1932]Foundations of the theory of algebraic numbers, 2 vols., New York: Macmillan, 1931, 1932 (repr. New York: Dover, 1964).
- [22] HENSEL ( K.) and LANDSBERG ( G.) [1902] Theorie der algebraischen Functionen einer Variabeln, Leipzig: Teubner, 1902 (repr. New York: Chelsea, 1965).
- [23] HILBERT ( D.) [Ges.Abh.2] Gesammelte Abhandlungen, vol. 2, Berlin: Springer, 1933; 2nd ed., 1970. Zbl0012.41201
- [24] HILBERT ( D.) [1888] Zur Theorie der algebraischen Gebilde, I, Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg. Augusts-Universität zu Göttingen, (1888), pp.450–457; Ges. Abh. 2, pp. 176–183. JFM20.0109.01
- [25] HILBERT ( D.) [1890] Über die Theorie der algebraischen Formen, Math. Ann., 36 (1890), pp.473–534; Ges. Abh.2, pp. 199–257. Zbl22.0133.01MR1510634JFM22.0133.01
- [26] HILBERT ( D.) [1893] Über die vollen Invariantensysteme, Ibid., 42 (1893), pp. 313-373; Ges. Abh.2, pp. 287–344. Zbl25.0173.01MR1510781JFM25.0173.01
- [27] HILBERT ( D.) [1897/1993]Theory of algebraic invariants, English transl. of handwritten lecture notes of 1897 by R.C.Laubenbacher, with an introduction by B.Sturmfels (ed.), Cambridge: Cambridge University Press, 1993. Zbl0801.13001MR1266168
- [28] HODGE ( W.V.D.) and PEDOE ( D.) [1947–1954] Methods of algebraic geometry, 3 vols., Cambridge: Cambridge University Press, 1947, 1952, 1954. Zbl0055.38705
- [29] HOUZEL ( C.) [1991] Aux origines de la géométrie algébrique: les travaux de Picard sur les surfaces (1884–1905), Cahiers d’histoire et de philosophie des sciences, 34 (1991), pp.243–276.
- [30] KLEIN ( C.F.) [1926] Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, vol.1, Berlin: Teubner (repr. New York: Chelsea, 1950). JFM52.0022.05
- [31] KÖNIG ( J.) [1903] Einleitung in die allgemeine Theorie der algebraischen Gröszen, Leipzig: Teubner, 1903. JFM34.0093.02
- [32] KÖNIG ( R.) [1918] Grundzüge einer Theorie der Riemannschen Funktionenpaare, Math. Ann., 78 (1918), pp. 63–93. JFM46.0594.02
- [33] KÖNIG ( R.) [1919] Die Reduktions- und Reziprozitätstheoreme bei den Riemannschen Transzendenten, Ibid., 79 (1919), pp. 76–135. Zbl46.0596.02JFM46.0596.02
- [34] KRONECKER ( L.) [Werke 2] Werke, vol. 2, K. Hensel ed., Leipzig: Teubner, 1897 (repr. New York: Chelsea, 1968). JFM56.0023.08
- [35] KRONECKER ( L.) [1881] Über die Discriminante algebraischer Functionen einer Variabeln, J. reine angew. Math., 91 (1881), pp. 301–334; Werke 2, pp. 193–236. Zbl13.0065.01JFM13.0065.01
- [36] KRONECKER ( L.) [1882] Grundzüge einer arithmetischen Theorie der algebraischen Grössen, Ibid., 92 (1882), pp. 1–122; Werke 2, pp. 237–388. JFM14.0038.02
- [37] KRONECKER ( L.) [1883 ] Zur Theorie der Formen höherer Stufen, Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, (1883), pp. 957–960; Werke 2, pp. 417–424. JFM14.0044.02
- [38] KRONECKER ( L.) [1901] Vorlesungen über Zahlentheorie, vol. 1, K. Hensel ed., Leipzig: Teubner, 1901 (repr. Berlin-Heidelberg: Springer, 1978). Zbl0394.10002MR529431
- [39] KÜRSCHÁK ( J.) [1913a] Über Limesbildung und allgemeine Körpertheorie, Proceedings of the fifth international congress of mathematicians (Cambridge, 1912), vol. I, Cambridge: The University Press, pp. 285–289. JFM44.0238.03
- [40] KÜRSCHÁK ( J.) [1913b] Über Limesbildung und allgemeine Körpertheorie, J. reine angew. Math., 142 (1913), pp. 211–253. Zbl44.0239.01JFM44.0239.01
- [41] LANSDBERG ( G.) [1899] IB1c. Algebraische Gebilde. IC5 Arithmetische Theorie algebraischer Grössen, Encyklopädie der mathematischen Wissenschaften, I, Leipzig: Teubner, 1898–1904, pp. 283–319. JFM30.0096.02
- [42] LASKER ( E.) [1905] Zur Theorie der Moduln und Ideale, Math. Ann., 60 (1905), pp. 20–116. MR1511288JFM36.0292.01
- [43] MACAULAY ( F.S.) [1900] The theory of residuation, being a general treatment of the intersections of plane curves at multiple points, Proceedings of the London Mathematical Society, 31 (1900), pp. 381–423. MR1576720JFM30.0509.03
- [44] MACAULAY ( F.S.) [1905] The intersection of plane curves, with extensions to -dimensional algebraic manifolds, Verhandlungen des dritten internationalen Mathematiker-Kongresses (Heidelberg, 1904), Leipzig: Teubner, 1905, pp. 284–312. JFM36.0628.01
- [45] MACAULAY ( F.S.) [1913] On the resolution of a given modular system, Math. Ann., 74 (1913), pp.66–121. Zbl44.0246.01MR1511752JFM44.0246.01
- [46] MACAULAY ( F.S.) [1916] The algebraic theory of modular systems, Cambridge: Cambridge University Press (Cambridge tracts in mathematics and mathematical physics, 19), 1916; new ed., with an introduction by P.Roberts, 1996. MR1281612JFM46.0167.01
- [47] MOLK ( J.) [1885] Sur une notion qui comprend celle de la divisibilité et sur la théorie générale de l’élimination, Acta mathematica, 6 (1885), pp. 1–166. JFM17.0056.01
- [48] MOORE ( G.H.) [1982] Zermelo’s axiom of choice, Berlin-Heidelberg: Springer, 1982. MR679315
- [49] NETTO ( E.) [1885] Zur Theorie der Elimination, Acta math., 7 (1885), pp. 101–104. MR1554678JFM17.0096.01
- [50] NETTO ( E.) [1896] Über die arithmetisch-algebraischen Tendenzen Leopold Kronecker’s, Mathematical papers read at the international mathematical Congress, Chicago, 1893, pp. 243–252, New York: Macmillan, 1896. JFM27.0032.01
- [51] NETTO ( E.) [1896–1900] Algebra, 2 vols., Leipzig: Teubner, 1896, 1900.
- [52] NOETHER ( E.) [Ges.Abh.] Gesammelte Abhandlungen, N.Jacobson ed., Berlin-Heidelberg: Springer, 1983. Zbl0504.01035MR703862
- [53] NOETHER ( E.) [1915] Körper und Systeme rationaler Functionen, Math. Ann., 76 (1915), pp. 161–196; Ges. Abh., pp. 145–180. Zbl46.1442.08MR1511817JFM46.1442.08
- [54] NOETHER ( E.) [1919] Die arithmetische Theorie der algebraischen Funktionen einer Veränderlichen, Jber. d. Dt. Math.-Verein., 28 (1919), pp. 182–203; Ges. Abh., pp.271–292. JFM47.0349.06
- [55] NOETHER ( E.) [1921] Idealtheorie in Ringbereichen, Math. Ann., 83 (1921), pp. 24–66; Ges. Abh., pp. 354–396. Zbl48.0121.03MR1511996JFM48.0121.03
- [56] NOETHER ( E.) [1927] Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern, Ibid., 96 (1927), pp. 26–61; Ges. Abh., pp. 493–528. Zbl52.0130.01MR1512304JFM52.0130.01
- [57] NOETHER ( E.) [1930] Erläuterungen zur vorstehenden Abhandlung, in [Dedekind, Werke 1, p.350].
- [58] NOETHER ( M.) [1873] Ueber einen Satz aus der Theorie der algebraischen Functionen, Math. Ann., 6 (1873), pp. 351–359. MR1509826JFM05.0348.02
- [59] NOETHER ( M.) [1876] Ueber die singulären Werthsysteme einer algebraischen Function und die singulären Punkte einer algebraischen Curve, Ibid., 9 (1876), pp. 166–182. JFM07.0243.01
- [60] OSTROWSKI ( A.) [1913] Über einige Fragen der allgemeinen Körpertheorie, J. reine angew. Math., 143 (1913), pp. 255–284. Zbl44.0239.03JFM44.0239.03
- [61] PICARD ( E.) and SIMART ( G.) [1897-1906] Théorie des fonctions algébriques de deux variables indépendantes, 2 vols., Paris: Gauthier-Villars, 1897, 1906 (repr. New York: Chelsea, 1971). JFM37.0404.02
- [62] REID ( C.) [1970] Hilbert, New York: Springer, 1970. MR270884
- [63] RIEMANN ( B.) [1857] Theorie der Abel’schen Functionen, J. reine angew. Math., 54 (1857), pp.115–155; reprinted in Gesammelte mathematische Werke, 3rd ed, Berlin-Heidelberg: Springer, 1990, pp. 120–144.
- [64] ROWE ( D.E.) [to appear] The Göttingen response to general relativity and Emmy Noether’s theorems, in J.J.Gray (ed.), The symbolic universe: geometry and physics, 1890–1930, Oxford: Oxford University Press, to appear. Zbl1059.01511MR1750782
- [65] SHAFAREVICH ( I.R.) [1974] Basic algebraic geometry, transl. by K.A. Hirsch (Russian original ed. 1972), Berlin-Heidelberg: Springer, 1974. Zbl0362.14001MR366917
- [66] STEINITZ ( E.) [1910] Algebraische Theorie der Körper, J. reine angew. Math., 137 (1910), pp. 167–302; reprinted as Algebraische Theorie der Körper (R.Baer and H.Hasse, eds.), Leipzig: Walter de Gruyter, 1930. JFM41.0445.03
- [67] STUDY ( E.) [1923] Einleitung in die Theorie der Invarianten, Braunschweig: Vieweg, 1923.
- [68] SZÉNÁSSY ( B.) [1992] History of mathematics in Hungary until the 20th century, English transl., Berlin-New York: Springer, 1992. Zbl0766.01001
- [69] VAN DER WAERDEN ( B.L.) [1930–1931] Moderne Algebra, 2 vols., Berlin: Springer, 1930, 1931.
- [70] VAN DER WAERDEN ( B.L.) [1970] Nachwort zu Hilberts algebraischen Arbeiten, in [Hilbert, Ges. Abh. 2, pp.401–403].
- [71] VAN DER WAERDEN ( B.L.) [1971] The foundation of algebraic geometry from Severi to André Weil, Arch. Hist. Exact Sci., 7 (1971), pp. 171–180; repr. in [van der Waerden 1983, pp. 1–10]. Zbl0227.14003MR1554142
- [72] VAN DER WAERDEN ( B.L.) [1983] Zur algebraischen Geometrie, Berlin-Heidelberg: Springer, 1983. Zbl0552.14001
- [73] WEYL ( H.) [Ges.Abh.] Gesammelte Abhandlungen, 4 vols, K.Chandrasekharan ed., Berlin-Heidelberg: Springer, 1968. Zbl0164.30103
- [74] WEYL ( H.) [1940] Algebraic theory of numbers, Princeton: Princeton University Press, 1940. Zbl0063.08223MR2354JFM66.1210.02
- [75] WEYL ( H.) [1944] David Hilbert and his mathematical work, Bull. Amer. Math. Soc., 50 (1944), pp. 612–654; Ges. Abh. 4, pp. 130–172. Zbl0060.01521MR11274
- [76] ZARISKI ( O.) and SAMUEL ( P.) [1958–1960] Commutative algebra, 2 vols., Princeton: Van Nostrand, 1958, 1960.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.