Blow-up for the non linear Schrödinger equation in the “log log” regime

Nicolas Burq

Séminaire Bourbaki (2005-2006)

  • Volume: 48, page 33-54
  • ISSN: 0303-1179

Abstract

top
In this talk we present some recent results by Merle and Raphael on analysis of blow-up solution for the L 2 critical non linear Schrödinger equation. In particular, we focus on their proof of the fact that initial data with negative energy (which had been known to blow up by the viriel identity) and with L 2 norm close to the ground states’s L 2 norm, do blow up in the “log log” regime and that this behaviour is stable.

How to cite

top

Burq, Nicolas. "Explosion pour l’équation de Schrödinger au régime du “log log”." Séminaire Bourbaki 48 (2005-2006): 33-54. <http://eudml.org/doc/252167>.

@article{Burq2005-2006,
abstract = {On présente dans cet exposé des résultats récents de Merle et Raphael sur l’analyse des solutions explosives de l’équation de Schrödinger $L^2$ critique. On s’intéresse en particulier à leur preuve du fait que les solutions d’énergie négative (dont on savait qu’elles explosaient par l’argument du viriel) et dont la norme $L^2$ est proche de celle de l’état fondamental, explosent au régime du “log log”et que ce comportement est stable.},
author = {Burq, Nicolas},
journal = {Séminaire Bourbaki},
keywords = {non linear Schrödinger equations; blow-up},
language = {fre},
pages = {33-54},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Explosion pour l’équation de Schrödinger au régime du “log log”},
url = {http://eudml.org/doc/252167},
volume = {48},
year = {2005-2006},
}

TY - JOUR
AU - Burq, Nicolas
TI - Explosion pour l’équation de Schrödinger au régime du “log log”
JO - Séminaire Bourbaki
PY - 2005-2006
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 48
SP - 33
EP - 54
AB - On présente dans cet exposé des résultats récents de Merle et Raphael sur l’analyse des solutions explosives de l’équation de Schrödinger $L^2$ critique. On s’intéresse en particulier à leur preuve du fait que les solutions d’énergie négative (dont on savait qu’elles explosaient par l’argument du viriel) et dont la norme $L^2$ est proche de celle de l’état fondamental, explosent au régime du “log log”et que ce comportement est stable.
LA - fre
KW - non linear Schrödinger equations; blow-up
UR - http://eudml.org/doc/252167
ER -

References

top
  1. [BP93] V. Buslaev & G. Perel’man – “Scattering for the nonlinear Schrödinger equation : States close to a soliton”, St. Petersbg. Math. J. 4 (1993), no. 6, p. 1111–1142 (Russian, English). Zbl0853.35112MR1199635
  2. [BP95] —, “On the stability of solitary waves for nonlinear Schrödinger equations”, Amer. Math. Soc. Transl., Ser. 2 164 (1995), no. 22, p. 75–98 (English). Zbl0841.35108
  3. [BW97] J. Bourgain & W. Wang – “Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity.”, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., IV. Ser. 25 (1997), no. 1-2, p. 197–215 (English). Zbl1043.35137MR1655515
  4. [FMR04] G. Fibich, F. Merle & P. Raphael – “Numerical proof of a spectral property related to the singularity formation for the L 2 critical non linear Schrödinger equation”, preprint, 2004. Zbl1100.35097
  5. [GM94a] L. Glangetas & F. Merle – “Concentration properties of blow-up solutions and instability results for Zakharov equation in dimension two II”, Comm. Math. Phys. 160 (1994), no. 2, p. 349–389. Zbl0808.35138MR1262202
  6. [GM94b] —, “Existence of self-similar blow-up solutions for Zakharov equation in dimension two I”, Comm. Math. Phys. 160 (1994), no. 1, p. 173–215. Zbl0808.35137MR1262194
  7. [GV79] J. Ginibre & G. Velo – “On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case”, J. Funct. Anal. 32 (1979), no. 1, p. 1–32. Zbl0396.35028MR533219
  8. [JP93] R. Johnson & X. B. Pan – “On an elliptic equation related to the blow-up phenomenon in the nonlinear Schrödinger equation”, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), no. 4, p. 763–782. Zbl0788.35041MR1237613
  9. [Lio84] P.-L. Lions – “The concentration-compactness principle in the calculus of variations. The locally compact case. I”, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, p. 109–145. Zbl0541.49009MR778970
  10. [LPSS88] M. J. Landman, G. C. Papanicolaou, C. Sulem & P.-L. Sulem – “Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension”, Phys. Rev. A (3) 38 (1988), no. 8, p. 3837–3843. MR966356
  11. [Mer93] F. Merle – “Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power”, Duke Math. J. 69 (1993), no. 2, p. 427–454. Zbl0808.35141MR1203233
  12. [Mer96a] —, “Blow-up results of virial type for Zakharov equations”, Comm. Math. Phys. 175 (1996), no. 2, p. 433–455. Zbl0858.35117MR1370102
  13. [Mer96b] —, “Lower bounds for the blowup rate of solutions of the Zakharov equation in dimension two”, Comm. Pure Appl. Math. 49 (1996), no. 8, p. 765–794. Zbl0856.35014MR1391755
  14. [MM00] Y. Martel & F. Merle – “A Liouville theorem for the critical generalized Korteweg-de Vries equation”, J. Math. Pures Appl. (9) 79 (2000), no. 4, p. 339–425. Zbl0963.37058MR1753061
  15. [MM02a] —, “Blow up in finite time and dynamics of blow up solutions for the L 2 -critical generalized KdV equation”, J. Amer. Math. Soc. 15 (2002), no. 3, p. 617–664 (electronic). Zbl0996.35064MR1896235
  16. [MM02b] —, “Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation”, Ann. of Math. (2) 155 (2002), no. 1, p. 235–280. Zbl1005.35081MR1888800
  17. [MM04] —, “Review on blow up and asymptotic dynamics for critical and subcritical gKdV equations”, Noncompact problems at the intersection of geometry, analysis, and topology, Contemp. Math., vol. 350, Amer. Math. Soc., Providence, 2004, p. 157–177. Zbl1071.35114MR2082397
  18. [MR03] F. Merle & P. Raphael – “Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation”, Geom. Funct. Anal. 13 (2003), no. 3, p. 591–642. Zbl1061.35135MR1995801
  19. [MR04] —, “On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation”, Invent. Math. 156 (2004), no. 3, p. 565–672. Zbl1067.35110MR2061329
  20. [MR05a] —, “The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation”, Ann. of Math. (2) 161 (2005), no. 1, p. 157–222. Zbl1185.35263MR2150386
  21. [MR05b] —, “On one blow up point solutions to the critical nonlinear Schrödinger equation”, J. Hyperbolic Differ. Equ. 2 (2005), no. 4, p. 919–962. Zbl1117.35075MR2195987
  22. [MR05c] —, “Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation”, Comm. Math. Phys. 253 (2005), no. 3, p. 675–704. Zbl1062.35137MR2116733
  23. [Naw99] H. Nawa – “Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power”, Comm. Pure Appl. Math. 52 (1999), no. 2, p. 193–270. Zbl0964.37014MR1653454
  24. [OT91] T. Ogawa & Y. Tsutsumi – “Blow-up of H 1 solution for the nonlinear Schrödinger equation”, J. Differential Equations 92 (1991), no. 2, p. 317–330. Zbl0739.35093MR1120908
  25. [Per01] G. Perelman – “On the formation of singularities in solutions of the critical nonlinear Schrödinger equation”, Ann. Inst. H. Poincaré 2 (2001), no. 4, p. 605–673. Zbl1007.35087MR1852922
  26. [Rap04] P. Raphael – “On the blow up phenomenon for the L 2 critical non linear Schrödinger equation”, preprint, 2004. Zbl1158.35425
  27. [Rap05] —, “Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation”, Math. Ann. 331 (2005), no. 3, p. 577–609. Zbl1082.35143MR2122541
  28. [SS99] C. Sulem & P.-L. Sulem – The nonlinear Schrödinger equation, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999, Self-focusing and wave collapse. Zbl0928.35157MR1696311
  29. [Tzv05] N. Tzvetkov – “On the long time behaviour of KdV type equations”, Séminaire Bourbaki, vol. 2003/2004, Astérisque, vol. 299, 2005, exp. no 933. Zbl1074.35079
  30. [Wei85] M. I. Weinstein – “Modulational stability of ground states of nonlinear Schrödinger equations”, SIAM J. Math. Anal. 16 (1985), no. 3, p. 472–491. Zbl0583.35028MR783974
  31. [Wei83] —, “Nonlinear Schrödinger equations and sharp interpolation estimates”, Comm. Math. Phys. 87 (1982/83), no. 4, p. 567–576. Zbl0527.35023MR691044
  32. [ZS71] V. E. Zakharov & A. B. Shabat – “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, p. 118–134. MR406174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.