Technicalities in the calculation of the 3rd post-Newtonian dynamics

Piotr Jaranowski

Banach Center Publications (1997)

  • Volume: 41, Issue: 2, page 55-63
  • ISSN: 0137-6934

Abstract

top
Dynamics of a point-particle system interacting gravitationally according to the general theory of relativity can be analyzed within the canonical formalism of Arnowitt, Deser, and Misner. To describe the property of being a point particle one can employ Dirac delta distribution in the energy-momentum tensor of the system. We report some mathematical difficulties which arise in deriving the 3rd post-Newtonian Hamilton's function for such a system. We also offer ways to overcome partially these difficulties.

How to cite

top

Jaranowski, Piotr. "Technicalities in the calculation of the 3rd post-Newtonian dynamics." Banach Center Publications 41.2 (1997): 55-63. <http://eudml.org/doc/252187>.

@article{Jaranowski1997,
abstract = {Dynamics of a point-particle system interacting gravitationally according to the general theory of relativity can be analyzed within the canonical formalism of Arnowitt, Deser, and Misner. To describe the property of being a point particle one can employ Dirac delta distribution in the energy-momentum tensor of the system. We report some mathematical difficulties which arise in deriving the 3rd post-Newtonian Hamilton's function for such a system. We also offer ways to overcome partially these difficulties.},
author = {Jaranowski, Piotr},
journal = {Banach Center Publications},
keywords = {ADM formalism; point-particle system; energy-momentum tensor},
language = {eng},
number = {2},
pages = {55-63},
title = {Technicalities in the calculation of the 3rd post-Newtonian dynamics},
url = {http://eudml.org/doc/252187},
volume = {41},
year = {1997},
}

TY - JOUR
AU - Jaranowski, Piotr
TI - Technicalities in the calculation of the 3rd post-Newtonian dynamics
JO - Banach Center Publications
PY - 1997
VL - 41
IS - 2
SP - 55
EP - 63
AB - Dynamics of a point-particle system interacting gravitationally according to the general theory of relativity can be analyzed within the canonical formalism of Arnowitt, Deser, and Misner. To describe the property of being a point particle one can employ Dirac delta distribution in the energy-momentum tensor of the system. We report some mathematical difficulties which arise in deriving the 3rd post-Newtonian Hamilton's function for such a system. We also offer ways to overcome partially these difficulties.
LA - eng
KW - ADM formalism; point-particle system; energy-momentum tensor
UR - http://eudml.org/doc/252187
ER -

References

top
  1. [1] R. Arnowitt, S. Deser, and C. W. Misner, The dynamics of general relativity, in: Gravitation: an introduction to current research, L. Witten (ed.), Wiley, New York, 1962, 227-265. 
  2. [2] I. M. Gel'fand and G. E. Shilov, Generalized functions, Academic Press, New York, 1964. 
  3. [3] P. Jaranowski and G. Schäfer, Radiative 3.5 post-Newtonian ADM Hamiltonian for many-body point-mass systems, Phys. Rev. D (1996), submitted. 
  4. [4] P. Jaranowski and G. Schäfer, 3rd post-Newtonian ADM Hamiltonian for two-body point-mass systems, in preparation. 
  5. [5] S. M. Kopeikin, General-relativistic equations of binary motion for extended bodies with conservative corrections and radiation damping, Sov. Astron. 29 (1985), 516-524. 
  6. [6] T. Ohta, H. Okamura, T. Kimura, and K. Hiida, Higher order gravitational potential for many-body system, Progr. Theor. Phys. 51 (1974), 1220-1238. 
  7. [7] M. Riesz, L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Mathematica 81 (1949), 1-223. 
  8. [8] G. Schäfer, The gravitational quadrupole radiation-reaction force and the canonical formalism of ADM, Annals of Physics 161 (1985), 81-100. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.