Problems in the theory of quantum groups

Shuzhou Wang

Banach Center Publications (1997)

  • Volume: 40, Issue: 1, page 67-78
  • ISSN: 0137-6934

Abstract

top
This is a collection of open problems in the theory of quantum groups. Emphasis is given to problems in the analytic aspects of the subject.

How to cite

top

Wang, Shuzhou. "Problems in the theory of quantum groups." Banach Center Publications 40.1 (1997): 67-78. <http://eudml.org/doc/252201>.

@article{Wang1997,
abstract = {This is a collection of open problems in the theory of quantum groups. Emphasis is given to problems in the analytic aspects of the subject.},
author = {Wang, Shuzhou},
journal = {Banach Center Publications},
keywords = {compact quantum groups; quantum homogeneous spaces; collection of open problems; quantum groups},
language = {eng},
number = {1},
pages = {67-78},
title = {Problems in the theory of quantum groups},
url = {http://eudml.org/doc/252201},
volume = {40},
year = {1997},
}

TY - JOUR
AU - Wang, Shuzhou
TI - Problems in the theory of quantum groups
JO - Banach Center Publications
PY - 1997
VL - 40
IS - 1
SP - 67
EP - 78
AB - This is a collection of open problems in the theory of quantum groups. Emphasis is given to problems in the analytic aspects of the subject.
LA - eng
KW - compact quantum groups; quantum homogeneous spaces; collection of open problems; quantum groups
UR - http://eudml.org/doc/252201
ER -

References

top
  1. [1] Andersen, H.H. Polo, P. and Wen, K.: Representations of quantum algebras, Invent. Math. 104 (1991), 1-59. Zbl0724.17012
  2. [2] Andruskiewitsch, N. and Enriquez, B.: Examples of compact matrix pseudogroups arising from twisting operation, Commun. Math. Phys. 149 (1992), 195-208. Zbl0756.17006
  3. [3] Baaj, S.: Représentation régulière du groupe quantique E μ ( 2 ) de Woronowicz, C. R. Acad. Sci. Paris t. 314, Serie I (1992), 1021-1026. Zbl0771.17011
  4. [4] Baaj, S.: Représentation régulière du groupe quantique des déplacements de Woronowicz, in Recent Advances in Operator Algebras, Astérisque 232 (1995), 11-48. 
  5. [5] Baaj, S. and Skandalis, G.: Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres, Ann. Sci. Ec. Norm. Sup. 26 (1993), 425-488. 
  6. [6] Banica, T.: Théorie des représentations du groupe quantique compact libre O(n), C. R. Acad. Sci. Paris t. 322, Serie I (1996), 241-244. 
  7. [7] Banica, T.: Le groupe quantique compact libre U(n), Preprint, Unversity of Paris VII, 1996. 
  8. [8] Biedenharn, L. C. and Lohe, M. A.: An extension of the Borel-Weil construction to the quantum group U q ( n ) , Comm. Math. Phys. 146 (1992), 483-504. Zbl0757.17009
  9. [9] Boca, F.: Ergodic actions of compact matrix pseudogroups on C*-algebras, in Recent Advances in Operator Algebras, Astérisque 232 (1995), 93-109. Zbl0842.46039
  10. [10] Borel, A. et al (ed): Automorphic Forms, Representations, and L-Functions, Proc. Symp. Pure Math., Vol 33, Amer. Math. Soc., 1979. 
  11. [11] Brzeziński, T. and Majid, S.: Quantum group gauge theory on quantum spaces, Commun. Math. Phys. 157 (1993), 591-638. Zbl0817.58003
  12. [12] Burghelea, D.: The cyclic homology of the groups rings, Comment. Math. Helv. 60 (1985), 354-365. Zbl0595.16022
  13. [13] Chari, V. and Pressley, A.: A Guide to Quantum Groups, Cambridge University Press, 1994. Zbl0839.17009
  14. [14] Connes, A.: Noncommutative Geometry, Academic Press, 1994. Zbl0818.46076
  15. [15] Connes, A.: Non-commutative differential geometry, Publ. Math. IHES 62 (1985), 41-144. Zbl0592.46056
  16. [16] Connes, A.: Noncommutative geometry and reality, J. Math. Phys. 36 No 11 (1996). Zbl0871.58008
  17. [17] Curtis, C. W. and Reiner, I.: Methods in Representation Theory, I, Wiley, 1981. Zbl0469.20001
  18. [18] Curtis, C. W. and Reiner, I.: Methods in Representation Theory, II, Wiley, 1987. Zbl0616.20001
  19. [19] Drinfeld, V. G.: Quantum groups, Proc. ICM-1986, Berkeley, Vol I, Amer. Math. Soc., Providence, R.I., 1987, pp798-820. 
  20. [20] Dubois-Violette, M. and Launer, G.: The quantum group of a non-degenerate bilinear form, Phys. Lett. B 245 (1990), 175-177. Zbl1119.16307
  21. [21] Effros, E. and Ruan, Z.-J.: Discrete quantum groups, I. The Haar measure, Internat. J. Math. 5 (1994), 681-723. Zbl0824.17020
  22. [22] Enoch, M. and Schwartz, J. M.: Kac Algebras and Duality of Locally Compact Groups, Springer-Verlag, New York, 1992. 
  23. [23] Enock, M. and Vainerman, L.: Deformation of a Kac algebra by an abelian subgroup, Preprint, Univ. Pierre et Marrie Curie, Aug, 1995. Zbl0876.46042
  24. [24] Faddeev, L. D. Reshetikhin, N. Y. and Takhtajan, L. A.: Quantization of Lie groups and Lie algebras, Algebra and Analysis 1 (1990), 193-225. Zbl0715.17015
  25. [25] Gelbart, S. S.: Automorphic Forms on Adele Groups, Annals of Mathematics Studies 83, Princeton University Press, 1975. Zbl0329.10018
  26. [26] Goodman, F. M. de la Harpe, P. and Jones, V. F. R.: Coxeter Graphs and Towers of Algebras, MSRI Publ. 14, Springer-Verlag, 1989. Zbl0698.46050
  27. [27] Hajac, P. M.: Strong Connections and U q ( 2 ) -Yang-Mills Theory on Quantum Principal Bundles, Ph.D Thesis, University of California at Berkeley, May, 1994. 
  28. [28] Kac, G.: Certain arithmetic properties of ring groups, Funct. Anal. Appl. 6 (1972), 158-160. Zbl0258.16007
  29. [29] Kac, G. and Palyutkin, V.: An example of a ring group generated by Lie groups, Ukrain. Math. J. 16 (1964), 99-105. 
  30. [30] Kac, G. and Palyutkin, V.: Finite ring groups, Trans. Moscow Math. Soc. 15 (1966), 251-294. 
  31. [31] Knapp, A. W.: Representation Theory of Semisimple Groups: An Overview Based on Examples, Princeton University Press, 1986. Zbl0604.22001
  32. [32] Landstad, M. B.: Quantizations arising from abelian subgroups, Internat. J. Math. 5 (1994), 897-936. Zbl0853.17014
  33. [33] Levendorskii, S.: Twisted algebra of functions on compact quantum group and their representations, St. Petersburg Math. J. 3:2 (1992), 405-423. Zbl0791.17012
  34. [34] Levendorskii, S. and Soibelman, Y.: Algebra of functions on compact quantum groups, Schubert cells, and quantum tori, Comm. Math. Phys. 139, (1991), 141-170. 
  35. [35] Lusztig, G.: Introduction to Quantum Groups, Progress in Mathematics Vol 110, Birkhauser, 1993. Zbl0788.17010
  36. [36] Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), 237-249. Zbl0651.17007
  37. [37] Majid, S.: Physics for algebraists: non-commutative and noncocommutative Hopf algebras by a bycrossproduct construction, J. Algebra 130 (1990), 17-64. Zbl0694.16008
  38. [38] Manin, Y.: Quantum Groups and Noncommutative Geometry, Publications du C.R.M. 1561, Univ de Montreal, 1988. Zbl0724.17006
  39. [39] Masuda, T. Mimachi, K. Nakagami, Y. Noumi, M. Saburi, Y. and Ueno, K.: Unitary representations of the quantum group S U q ( 1 , 1 ) : I-Structure of the dual space of U q s l ( 2 ) , Lett. Math. Phys. 19 (1990), 187-194. Zbl0704.17007
  40. [40] Masuda, T. Mimachi, K. Nakagami, Y. Noumi, M. Saburi, Y. and Ueno, K.: Unitary representations of the quantum group S U q ( 1 , 1 ) : II-Matrix elements of unitary representations and basic hypergeometric functions, Lett. Math. Phys. 19 (1990), 195-204. Zbl0704.17008
  41. [41] Masuda, T. and Nakagami, Y.: A von Neumann algebra framework for the duality of the quantum groups, Publ. RIMS 30:5 (1994), 799-850. Zbl0839.46055
  42. [42] Masuda, T. Nakagami, Y. and Watanabe, J.: Noncommutative geometry on the quantum SU(2) I: An algebraic viewpoint, K-theory 4 (1990), 157-180. Zbl0719.46042
  43. [43] Masuda, T. Nakagami, Y. and Woronowicz, S. L.: A C*-algebraic framework for quantum groups, to appear. Zbl1053.46050
  44. [44] Nakagami, Y.: Takesaki duality for the crossed product by quantum groups, in Quantum and Non-Commutative Analysis, H. Araki ed., Kluwer Academic Publishers, 1993, 263-281. Zbl0840.46045
  45. [45] Pal, A.: Induced representation and Frobenius reciprocity for compact quantum groups, Proc. Indian Acad. Sci. (Math. Sci.) 105:2 (1995), 157-167. Zbl0959.22004
  46. [46] Parshall, B. and Wang, J.: Quantum linear groups, Memoirs AMS 439, 1991. 
  47. [47] Podleś, P.: Quantum spheres, Letters Math. Phys. 14 (1987), 193-202. Zbl0634.46054
  48. [48] Podleś, P.: Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Comm. Math. Phys. 170 (1995), 1-20. Zbl0853.46074
  49. [49] Podleś, P. and Woronowicz, S. L.: Quantum deformation of Lorentz group, Comm. Math. Phys. 130 (1990), 381-431. Zbl0703.22018
  50. [50] Pusz, W.: Irreducible unitary representations of quantum Lorentz group, Comm. Math. Phys. 152 (1993), 591-626. Zbl0810.17009
  51. [51] Pusz, W. and Woronowicz, S. L.: Unitary representations of quantum Lorentz group, Preprint, Warsaw University, 1993. Zbl0828.17015
  52. [52] Rieffel, M.: Noncommutative tori, Contemp. Math 105 (1990), 191-211. 
  53. [53] Rieffel, M.: Some solvable quantum groups, in Operator Algebras and Topology, W. B. Arveson, A. S. Mischenko, M. Putinar, M. A. Rieffel and S. Stratila, ed., Proc. Conf. Operator Algebras and their Connection with Topology and Ergodic Theory, 2nd Conference, Romania, 1989, Pitman Research Notes in Mathematics 270, Longman, Burnt Mill, England, 1992, pp146-159. Zbl0804.17010
  54. [54] Rieffel, M.: Compact quantum groups associated with toral subgroups, Contemp. Math. 145 (1993), 465-491. Zbl0795.17017
  55. [55] Rieffel, M.: Non-compact quantum groups associated with abelian subgroups, Comm. Math. Phys. 171 (1995), 181-201. Zbl0857.17014
  56. [56] Rosso, M.: Comparaison des groupes SU(2) quantiques de Drinfeld et Woronowicz, C. R. Acad. Sci. Paris 304 (1987), 323-326. 
  57. [57] Rosso, M.: Finite dimensional representations of the quantum analog of the enveloping algebra of a complex semisimple Lie algebra, Comm. Math. Phys. 117 (1988), 581-593. Zbl0651.17008
  58. [58] Rosso, M.: Algèbres enveloppantes quantifiées, groupes quantiques compacts de matrices et calcul différentiel non-commutatif, Duke Math. J. 61 (1990), 11-40. Zbl0721.17013
  59. [59] Serre, J.-P.: Arbres, amalgames, S L 2 , Soc. Math. France, Asterisque 46 (1977). 
  60. [60] Skandalis, G.: Operator algebras and duality, Proc. ICM-1990, Kyoto, Vol II, Springer, New York, 1991, pp997-1009. Zbl0819.46054
  61. [61] Soibelman, Y.: Algebra of functions on a compact quantum group and its representations, Leningrad Math. J. 2:1 (1990), 161-178. 
  62. [62] Vaksman, L. and Soibelman, Y.: The algebra of functions on quantum SU(2), Funct. Anal. ego Pril. 223, (1988), 1-14. Zbl0661.43001
  63. [63] Varadarajan, V. S.: Lie Groups, Lie Algebras, and their Representations, Graduate Text in Math, no. 102, Springer, 1984. Zbl0955.22500
  64. [64] Van Daele, A.: Quantum deformation of the Heisenberg group, Proc. Satellite Conf. of ICM-90, Current Topics in Operator Algebras, 314-325. Zbl0811.46074
  65. [65] Van Daele, A.: Discrete quantum groups, J. Alg. 180 (1996), 431-444. Zbl0864.17012
  66. [66] Van Daele, A. and Wang, S. Z.: Universal quantum groups, International J. Math 7:2 (1996), 255-264. Zbl0870.17011
  67. [67] Wang, S. Z.: General Constructions of Compact Quantum Groups, Ph.D Thesis, University of California at Berkeley, March, 1993. 
  68. [68] Wang, S. Z.: Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), 671-692. Zbl0838.46057
  69. [69] Wang, S. Z.: Tensor products and crossed products of compact quantum groups, Proc. London Math. Soc. 71 (1995), 695-720. Zbl0837.46052
  70. [70] Wang, S. Z.: Krein duality for compact quantum groups, J. Math. Phys. 38 No. 1 (1997). %Preprint, Spring, 1992. 
  71. [71] Wang, S. Z.: Deformations of compact quantum groups via Rieffel's quantization, Commun. Math. Phys. 178 (1996), 747-764. Zbl0876.17021
  72. [72] Wang, S. Z.: New classes of compact quantum groups, Lecture notes for talks at the University of Amsterdam and the University of Warsaw, January and March, 1995. 
  73. [73] S. Z. Wang, Classification of quantum groups S U q ( n ) , to appear in J. London Math. Soc. 
  74. [74] S. Z. Wang, Imprimitivity theory for compact quantum groups, In preparation. 
  75. [75] S. Z. Wang, Rieffel type discrete deformations of finite quantum groups, In preparation. 
  76. [76] S. Z. Wang, Actions of universal quantum groups on operator algebras, In preparation. 
  77. [77] S. Z. Wang, Quantum symmetry groups of finite spaces, In preparation. 
  78. [78] Wassermann, A.: Ergodic actions of compact groups on operator algebras III: Classification for SU(2), Invent. Math. 93 (1988), 309-355. Zbl0692.46058
  79. [79] Weyl, H.: The Classical Groups, Princeton University Press, 1946. Zbl1024.20502
  80. [80] Weyl, H.: Theory of Groups and Quantum Mechanics, Princeton University Press, 1930. 
  81. [81] Woronowicz, S. L.: Twisted SU(2) group. An example of noncommutative differential calculus, Publ. RIMS, Kyoto Univ. 23, (1987), 117-181. Zbl0676.46050
  82. [82] Woronowicz, S. L.: Compact matrix pseudogroups, Comm. Math. Phys. 111, (1987), 613-665. Zbl0627.58034
  83. [83] Woronowicz, S. L.: Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93 (1988), 35-76. Zbl0664.58044
  84. [84] Woronowicz, S. L.: Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), 125-170. Zbl0751.58042
  85. [85] Woronowicz, S. L.: Unbounded elements affiliated with C*-algebras and non-compact quantum groups, Comm. Math. Phys. 136 (1991), 399-432. Zbl0743.46080
  86. [86] Woronowicz, S. L.: Compact quantum groups, Preprint, Warsaw University, 1992 Zbl0759.17009
  87. [87] Woronowicz, S. L.: C*-algebras generated by unbounded elements, Reviews in Mathematical Physics 7:3 (1995), 481-521. Zbl0853.46057
  88. [88] Woronowicz, S. L.: From multiplicative unitaries to quantum groups, Preprint, Warsaw University, March, 1995. Zbl0876.46044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.