Quasi-local energy-momentum and the Sen geometry of two-surfaces

László Szabados

Banach Center Publications (1997)

  • Volume: 41, Issue: 1, page 205-219
  • ISSN: 0137-6934

Abstract

top
We review the main ideas of the two dimensional Sen geometry and apply these concepts i. in finding the `most natural' quasi-local energy-momentum, ii. in characterizing the zero energy-momentum and zero mass configurations and iii. in finding the quasi-local radiative modes of general relativity.

How to cite

top

Szabados, László. "Quasi-local energy-momentum and the Sen geometry of two-surfaces." Banach Center Publications 41.1 (1997): 205-219. <http://eudml.org/doc/252212>.

@article{Szabados1997,
abstract = {We review the main ideas of the two dimensional Sen geometry and apply these concepts i. in finding the `most natural' quasi-local energy-momentum, ii. in characterizing the zero energy-momentum and zero mass configurations and iii. in finding the quasi-local radiative modes of general relativity.},
author = {Szabados, László},
journal = {Banach Center Publications},
keywords = {spinors; twistors; Sen geometry; quasi-local energy-momentum; quasi-local radiative models},
language = {eng},
number = {1},
pages = {205-219},
title = {Quasi-local energy-momentum and the Sen geometry of two-surfaces},
url = {http://eudml.org/doc/252212},
volume = {41},
year = {1997},
}

TY - JOUR
AU - Szabados, László
TI - Quasi-local energy-momentum and the Sen geometry of two-surfaces
JO - Banach Center Publications
PY - 1997
VL - 41
IS - 1
SP - 205
EP - 219
AB - We review the main ideas of the two dimensional Sen geometry and apply these concepts i. in finding the `most natural' quasi-local energy-momentum, ii. in characterizing the zero energy-momentum and zero mass configurations and iii. in finding the quasi-local radiative modes of general relativity.
LA - eng
KW - spinors; twistors; Sen geometry; quasi-local energy-momentum; quasi-local radiative models
UR - http://eudml.org/doc/252212
ER -

References

top
  1. [1] F.W. Hehl, On the energy tensor of spinning massive matter in classical field theory and general relativity, Rep. Math. Phys. 9 55 (1976). 
  2. [2] B.F. Schutz, R. Sorkin, Variational aspects of relativistic field theories with application to perfect fluid, Ann. Phys. (N.Y.) 107 1 (1977). Zbl0363.49015
  3. [3] A. Trautman, Conservation laws in general relativity, in Gravitation: An Introduction to Current Research, ed. L. Witten, Wiley, New York 1962. 
  4. [4] A.J. Anderson, Principles of Relativity Physics, Ch. 13, Academic Press, New York, London 1967. 
  5. [5] J.N. Goldberg, Invariant transformations, conservation laws, energy-momentum, in General Relativity and Gravitation, vol 1., ed. A. Held, Plenum Press, New York 1980. 
  6. [6] R. Geroch, Asymptotic structure of spacetime, in Asymptotic Structure of Spacetime, ed. F.P. Esposito and L. Witten, Plenum Press, New York 1977. 
  7. [7] R. Beig, B.G. Schmidt, Einstein's equations near spatial infinity, Commun. Math. Phys. 87 65 (1982). Zbl0504.53025
  8. [8] A. Ashtekar, J.D. Romano, Spatial infinity as a boundary of spacetime, Class. Quantum Grav. 9 1069 (1992). Zbl0749.53042
  9. [9] R. Penrose, Zero rest-mass fields including gravitation: asymptotic behaviour, Proc. Roy. Soc. London A 284 159 (1965). Zbl0129.41202
  10. [10] R. Penrose, W. Rindler, Spinors and Spacetime, vol 1, Cambridge Univ. Press, Cambridge 1982. Zbl0591.53002
  11. [11] P. Schoen, S.-T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65 45 (1979). Zbl0405.53045
  12. [12] E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys. 80 381 (1981). Zbl1051.83532
  13. [13] J.M. Nester, A new gravitational energy expression with a simple positivity proof, Phys. Lett. 83 A 241 (1981). 
  14. [14] W. Israel, J.M. Nester, Positivity of the Bondi gravitational mass, Phys. Lett 85 A 259 (1981). 
  15. [15] M. Ludvigsen, J.A.G. Vickers, The positivity of the Bondi mass, J. Phys. A.: Math. Gen. 14 L389 (1981). 
  16. [16] M. Ludvigsen, J.A.G. Vickers, A simple proof of the positivity of the Bondi mass, J. Phys. A.: Math. Gen. 15 L67 (1982). 
  17. [17] G.T. Horowitz, M.J. Perry, Gravitational energy cannot become negative, Phys. Rev. Lett. 48 371 (1982). 
  18. [18] A. Ashtekar, G.T. Horowitz, Energy-momentum of isolated systems cannot be null, Phys. Lett. 89A 181 (1982). 
  19. [19] T. Parker, C.H. Taubes, On Witten's proof of the positive energy theorem, Commun. Math. Phys. 84 223 (1982). Zbl0528.58040
  20. [20] O. Reula, Existence theorem for solutions of Witten's equation and nonnegativity of total mass, J. Math. Phys. 23 810 (1982). Zbl0486.53024
  21. [21] G.T. Horowitz, K.P. Tod, A relation between local and total energy in general relativity, Commun. Math. Phys. 85 429 (1982). Zbl0501.53017
  22. [22] O. Reula, K.P. Tod, Positivity of the Bondi energy, J. Math. Phys. 25 1004 (1984). 
  23. [23] G.T. Horowitz, The positive energy theorem and its extensions, in Asymptotic Behaviour of Mass and Spacetime Geometry, Lecture Notes in Physics 202, Ed.: F.J. Flaherty, Springer, New York, 1984. Zbl0547.53038
  24. [24] P.F. Yip, A strictly-positive mass theorem, Commun. Math. Phys. 108 653 (1987). Zbl0609.53052
  25. [25] J. Jezierski, J. Kijowski, Positivity of total energy in general relativity, Phys. Rev. D 36 1041 (1987). Zbl0705.53046
  26. [26] J.M. Nester, A positive gravitational energy proof, Phys. Lett. 139 A 112 (1989). 
  27. [27] J.M. Nester, Positive energy via the teleparallel Hamiltonian, Int. J. Mod. Phys. A 4 1755 (1989). 
  28. [28] A. Dimakis, F. Müller-Hoissen, Spinor fields and the positive energy theorem, Class. Quantum Grav. 7 283 (1990). 
  29. [29] G. Bergqvist, Simplified spinorial proof of the positive energy theorem, Phys. Rev. D 48 628 (1993). 
  30. [30] L.J. Mason, J. Frauendiener, The Sparling 3-form, Ashtekar variables and quasi-local mass, in Twistors in Mathematics and Physics, ed. R. Baston and T. Bailey, London Math. Soc. Lecture Note Series, Cambridge Univ. Press, Cambridge 1990. 
  31. [31] J. Frauendiener, Geometric description of energy-momentum psoudotensors, Class. Quantum Grav. 6 L237 (1989). Zbl0687.53071
  32. [32] L.B. Szabados, On canonical pseudotensors, Sparling's form and Noether currents, Class. Quantum Grav. 9 2521 (1992), and KFKI Report 1991-29/B. Zbl0776.53060
  33. [33] A. Sen, On the existence of neutrino `zero-modes' in vacuum spacetimes J. Math. Phys. 22 1781 (1981). Zbl0900.53029
  34. [34] A. Komar, Covariant conservation laws in general relativity, Phys. Rev. 113 934 (1959). Zbl0086.22103
  35. [35] J. Winicour, L. Tamburino, Lorentz-covariant gravitational energy-momentum linkages, Phys. Rev. Lett. 15 601 (1965). Zbl0142.24003
  36. [36] S.W. Hawking, Gravitational radiation in an expanding universe, J. Math. Phys. 9 598 (1968). 
  37. [37] R. Bartnik, New definition of quasilocal mass, Phys. Rev. Lett. 62 2346 (1989). 
  38. [38] J.D. Brown, J.M. York, Jr, Quasi-local energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 1407 (1993). 
  39. [39] S. Lau, Canonical variables and quasi-local energy in general relativity, Class. Quantum Grav. 10 2379 (1993). Zbl0802.53045
  40. [40] S.A. Hayward, Quasilocal gravitational energy, Phys. Rev. D 49 831 (1994). 
  41. [41] J. Kijowski, A simple derivation of canonical structure and quasi-local Hamiltonians in general relativity, (unpublished) 1995. Zbl0873.53070
  42. [42] R. Penrose, Quasi-local mass and angular momentum in general relativity, Proc. Roy. Soc. Lond. A381 53 (1982). 
  43. [43] J.N. Goldberg, Conserved quantities at spatial and null infinity: The Penrose potential, Phys. Rev. D 41 41 (1990). 
  44. [44] M. Ludvigsen, J.A.G. Vickers, Momentum, angular momentum and their quasi-local null surface extensions, J. Phys. A: Math. Gen. 16 1155 (1983). Zbl0519.70022
  45. [45] G. Bergqvist, M. Ludvigsen, Quasilocal momentum and angular momentum in Kerr spacetime, Class. Quantum Grav. 8 697 (1991). Zbl0719.53051
  46. [46] A.J. Dougan, L.J. Mason, Quasilocal mass constructions with positive energy, Phys. Rev. Lett. 67 2119 (1991). Zbl0990.83515
  47. [47] G. Bergqvist, Positivity and definitions of mass, Class. Quantum Grav. 9 1917 (1992). Zbl0762.53047
  48. [48] G. Bergqvist, Quasilocal mass for event horizons, Class. Quantum Grav. 9 1753 (1992). Zbl0774.53038
  49. [49] A.J. Dougan, Quasi-local mass for spheres, Class. Quantum Grav. 9 2461 (1992). Zbl0770.53049
  50. [50] L.B. Szabados, On the positivity of the quasi-local mass, Class. Quantum Grav. 10 1899 (1993). Zbl0793.53100
  51. [51] R. Geroch, A. Held, R. Penrose, A spacetime calculus based on pairs of null directions, J. Math. Phys. 14 874 (1973). Zbl0875.53014
  52. [52] L.B. Szabados, Two dimensional Sen connections, in Relativity Today, Proceedings of the 4th Hungarian Relativity Workshop, Ed.: R.P. Kerr, Z. Perjés, Akadémiai Kiadó, Budapest 1993. 
  53. [53] L.B. Szabados, Two dimensional Sen connections in general relativity, Class. Quantum Grav. 11 1833 (1994). Zbl0820.53068
  54. [54] L.B. Szabados, Two dimensional Sen connections and quasi-local energy-momentum, Class Quantum Grav. 11 1847 (1994). Zbl0820.53069
  55. [55] S. Kobayashi, K. Nomizu, Foundation of differential geometry, vol 2, Interscience, New York, 1968. 
  56. [56] A. Ashtekar, Lectures on Non-perturbative Canonical Gravity, World Scientific, Singapore, 1991. 
  57. [57] R. Penrose, W. Rindler, Spinors and Spacetime, vol 2, Cambridge Univ. Press, Cambridge, 1986. 
  58. [58] C.W. Misner, D.H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136 B571 (1964). Zbl0129.41102
  59. [59] L.B. Szabados, Quasi-local energy-momentum and two-surface characterization of the pp-wave spacetimes, Class. Quantum Grav. 13 1661 (1996). Zbl0857.53063
  60. [60] D. Kramer, H. Stephani, M.A.H. MacCallum, E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge Univ. Press, Cambridge 1980. Zbl0449.53018
  61. [61] P.C. Aichelburg, Remark on the superposition principle for gravitational waves, Acta Phys. Austriaca 34 279 (1971). 
  62. [62] A. Ashtekar, Asymptotic Quantization, Bibliopolis, Naples 1987. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.