Quasi-local energy-momentum and the Sen geometry of two-surfaces
Banach Center Publications (1997)
- Volume: 41, Issue: 1, page 205-219
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topSzabados, László. "Quasi-local energy-momentum and the Sen geometry of two-surfaces." Banach Center Publications 41.1 (1997): 205-219. <http://eudml.org/doc/252212>.
@article{Szabados1997,
abstract = {We review the main ideas of the two dimensional Sen geometry and apply these concepts i. in finding the `most natural' quasi-local energy-momentum, ii. in characterizing the zero energy-momentum and zero mass configurations and iii. in finding the quasi-local radiative modes of general relativity.},
author = {Szabados, László},
journal = {Banach Center Publications},
keywords = {spinors; twistors; Sen geometry; quasi-local energy-momentum; quasi-local radiative models},
language = {eng},
number = {1},
pages = {205-219},
title = {Quasi-local energy-momentum and the Sen geometry of two-surfaces},
url = {http://eudml.org/doc/252212},
volume = {41},
year = {1997},
}
TY - JOUR
AU - Szabados, László
TI - Quasi-local energy-momentum and the Sen geometry of two-surfaces
JO - Banach Center Publications
PY - 1997
VL - 41
IS - 1
SP - 205
EP - 219
AB - We review the main ideas of the two dimensional Sen geometry and apply these concepts i. in finding the `most natural' quasi-local energy-momentum, ii. in characterizing the zero energy-momentum and zero mass configurations and iii. in finding the quasi-local radiative modes of general relativity.
LA - eng
KW - spinors; twistors; Sen geometry; quasi-local energy-momentum; quasi-local radiative models
UR - http://eudml.org/doc/252212
ER -
References
top- [1] F.W. Hehl, On the energy tensor of spinning massive matter in classical field theory and general relativity, Rep. Math. Phys. 9 55 (1976).
- [2] B.F. Schutz, R. Sorkin, Variational aspects of relativistic field theories with application to perfect fluid, Ann. Phys. (N.Y.) 107 1 (1977). Zbl0363.49015
- [3] A. Trautman, Conservation laws in general relativity, in Gravitation: An Introduction to Current Research, ed. L. Witten, Wiley, New York 1962.
- [4] A.J. Anderson, Principles of Relativity Physics, Ch. 13, Academic Press, New York, London 1967.
- [5] J.N. Goldberg, Invariant transformations, conservation laws, energy-momentum, in General Relativity and Gravitation, vol 1., ed. A. Held, Plenum Press, New York 1980.
- [6] R. Geroch, Asymptotic structure of spacetime, in Asymptotic Structure of Spacetime, ed. F.P. Esposito and L. Witten, Plenum Press, New York 1977.
- [7] R. Beig, B.G. Schmidt, Einstein's equations near spatial infinity, Commun. Math. Phys. 87 65 (1982). Zbl0504.53025
- [8] A. Ashtekar, J.D. Romano, Spatial infinity as a boundary of spacetime, Class. Quantum Grav. 9 1069 (1992). Zbl0749.53042
- [9] R. Penrose, Zero rest-mass fields including gravitation: asymptotic behaviour, Proc. Roy. Soc. London A 284 159 (1965). Zbl0129.41202
- [10] R. Penrose, W. Rindler, Spinors and Spacetime, vol 1, Cambridge Univ. Press, Cambridge 1982. Zbl0591.53002
- [11] P. Schoen, S.-T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65 45 (1979). Zbl0405.53045
- [12] E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys. 80 381 (1981). Zbl1051.83532
- [13] J.M. Nester, A new gravitational energy expression with a simple positivity proof, Phys. Lett. 83 A 241 (1981).
- [14] W. Israel, J.M. Nester, Positivity of the Bondi gravitational mass, Phys. Lett 85 A 259 (1981).
- [15] M. Ludvigsen, J.A.G. Vickers, The positivity of the Bondi mass, J. Phys. A.: Math. Gen. 14 L389 (1981).
- [16] M. Ludvigsen, J.A.G. Vickers, A simple proof of the positivity of the Bondi mass, J. Phys. A.: Math. Gen. 15 L67 (1982).
- [17] G.T. Horowitz, M.J. Perry, Gravitational energy cannot become negative, Phys. Rev. Lett. 48 371 (1982).
- [18] A. Ashtekar, G.T. Horowitz, Energy-momentum of isolated systems cannot be null, Phys. Lett. 89A 181 (1982).
- [19] T. Parker, C.H. Taubes, On Witten's proof of the positive energy theorem, Commun. Math. Phys. 84 223 (1982). Zbl0528.58040
- [20] O. Reula, Existence theorem for solutions of Witten's equation and nonnegativity of total mass, J. Math. Phys. 23 810 (1982). Zbl0486.53024
- [21] G.T. Horowitz, K.P. Tod, A relation between local and total energy in general relativity, Commun. Math. Phys. 85 429 (1982). Zbl0501.53017
- [22] O. Reula, K.P. Tod, Positivity of the Bondi energy, J. Math. Phys. 25 1004 (1984).
- [23] G.T. Horowitz, The positive energy theorem and its extensions, in Asymptotic Behaviour of Mass and Spacetime Geometry, Lecture Notes in Physics 202, Ed.: F.J. Flaherty, Springer, New York, 1984. Zbl0547.53038
- [24] P.F. Yip, A strictly-positive mass theorem, Commun. Math. Phys. 108 653 (1987). Zbl0609.53052
- [25] J. Jezierski, J. Kijowski, Positivity of total energy in general relativity, Phys. Rev. D 36 1041 (1987). Zbl0705.53046
- [26] J.M. Nester, A positive gravitational energy proof, Phys. Lett. 139 A 112 (1989).
- [27] J.M. Nester, Positive energy via the teleparallel Hamiltonian, Int. J. Mod. Phys. A 4 1755 (1989).
- [28] A. Dimakis, F. Müller-Hoissen, Spinor fields and the positive energy theorem, Class. Quantum Grav. 7 283 (1990).
- [29] G. Bergqvist, Simplified spinorial proof of the positive energy theorem, Phys. Rev. D 48 628 (1993).
- [30] L.J. Mason, J. Frauendiener, The Sparling 3-form, Ashtekar variables and quasi-local mass, in Twistors in Mathematics and Physics, ed. R. Baston and T. Bailey, London Math. Soc. Lecture Note Series, Cambridge Univ. Press, Cambridge 1990.
- [31] J. Frauendiener, Geometric description of energy-momentum psoudotensors, Class. Quantum Grav. 6 L237 (1989). Zbl0687.53071
- [32] L.B. Szabados, On canonical pseudotensors, Sparling's form and Noether currents, Class. Quantum Grav. 9 2521 (1992), and KFKI Report 1991-29/B. Zbl0776.53060
- [33] A. Sen, On the existence of neutrino `zero-modes' in vacuum spacetimes J. Math. Phys. 22 1781 (1981). Zbl0900.53029
- [34] A. Komar, Covariant conservation laws in general relativity, Phys. Rev. 113 934 (1959). Zbl0086.22103
- [35] J. Winicour, L. Tamburino, Lorentz-covariant gravitational energy-momentum linkages, Phys. Rev. Lett. 15 601 (1965). Zbl0142.24003
- [36] S.W. Hawking, Gravitational radiation in an expanding universe, J. Math. Phys. 9 598 (1968).
- [37] R. Bartnik, New definition of quasilocal mass, Phys. Rev. Lett. 62 2346 (1989).
- [38] J.D. Brown, J.M. York, Jr, Quasi-local energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 1407 (1993).
- [39] S. Lau, Canonical variables and quasi-local energy in general relativity, Class. Quantum Grav. 10 2379 (1993). Zbl0802.53045
- [40] S.A. Hayward, Quasilocal gravitational energy, Phys. Rev. D 49 831 (1994).
- [41] J. Kijowski, A simple derivation of canonical structure and quasi-local Hamiltonians in general relativity, (unpublished) 1995. Zbl0873.53070
- [42] R. Penrose, Quasi-local mass and angular momentum in general relativity, Proc. Roy. Soc. Lond. A381 53 (1982).
- [43] J.N. Goldberg, Conserved quantities at spatial and null infinity: The Penrose potential, Phys. Rev. D 41 41 (1990).
- [44] M. Ludvigsen, J.A.G. Vickers, Momentum, angular momentum and their quasi-local null surface extensions, J. Phys. A: Math. Gen. 16 1155 (1983). Zbl0519.70022
- [45] G. Bergqvist, M. Ludvigsen, Quasilocal momentum and angular momentum in Kerr spacetime, Class. Quantum Grav. 8 697 (1991). Zbl0719.53051
- [46] A.J. Dougan, L.J. Mason, Quasilocal mass constructions with positive energy, Phys. Rev. Lett. 67 2119 (1991). Zbl0990.83515
- [47] G. Bergqvist, Positivity and definitions of mass, Class. Quantum Grav. 9 1917 (1992). Zbl0762.53047
- [48] G. Bergqvist, Quasilocal mass for event horizons, Class. Quantum Grav. 9 1753 (1992). Zbl0774.53038
- [49] A.J. Dougan, Quasi-local mass for spheres, Class. Quantum Grav. 9 2461 (1992). Zbl0770.53049
- [50] L.B. Szabados, On the positivity of the quasi-local mass, Class. Quantum Grav. 10 1899 (1993). Zbl0793.53100
- [51] R. Geroch, A. Held, R. Penrose, A spacetime calculus based on pairs of null directions, J. Math. Phys. 14 874 (1973). Zbl0875.53014
- [52] L.B. Szabados, Two dimensional Sen connections, in Relativity Today, Proceedings of the 4th Hungarian Relativity Workshop, Ed.: R.P. Kerr, Z. Perjés, Akadémiai Kiadó, Budapest 1993.
- [53] L.B. Szabados, Two dimensional Sen connections in general relativity, Class. Quantum Grav. 11 1833 (1994). Zbl0820.53068
- [54] L.B. Szabados, Two dimensional Sen connections and quasi-local energy-momentum, Class Quantum Grav. 11 1847 (1994). Zbl0820.53069
- [55] S. Kobayashi, K. Nomizu, Foundation of differential geometry, vol 2, Interscience, New York, 1968.
- [56] A. Ashtekar, Lectures on Non-perturbative Canonical Gravity, World Scientific, Singapore, 1991.
- [57] R. Penrose, W. Rindler, Spinors and Spacetime, vol 2, Cambridge Univ. Press, Cambridge, 1986.
- [58] C.W. Misner, D.H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136 B571 (1964). Zbl0129.41102
- [59] L.B. Szabados, Quasi-local energy-momentum and two-surface characterization of the pp-wave spacetimes, Class. Quantum Grav. 13 1661 (1996). Zbl0857.53063
- [60] D. Kramer, H. Stephani, M.A.H. MacCallum, E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge Univ. Press, Cambridge 1980. Zbl0449.53018
- [61] P.C. Aichelburg, Remark on the superposition principle for gravitational waves, Acta Phys. Austriaca 34 279 (1971).
- [62] A. Ashtekar, Asymptotic Quantization, Bibliopolis, Naples 1987.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.