An introduction to the Einstein-Vlasov system

Alan Rendall

Banach Center Publications (1997)

  • Volume: 41, Issue: 1, page 35-68
  • ISSN: 0137-6934

How to cite

top

Rendall, Alan. "An introduction to the Einstein-Vlasov system." Banach Center Publications 41.1 (1997): 35-68. <http://eudml.org/doc/252216>.

@article{Rendall1997,
author = {Rendall, Alan},
journal = {Banach Center Publications},
keywords = {Einstein-Vlasov system; Vlasov equation; global existence with small data; local existence},
language = {eng},
number = {1},
pages = {35-68},
title = {An introduction to the Einstein-Vlasov system},
url = {http://eudml.org/doc/252216},
volume = {41},
year = {1997},
}

TY - JOUR
AU - Rendall, Alan
TI - An introduction to the Einstein-Vlasov system
JO - Banach Center Publications
PY - 1997
VL - 41
IS - 1
SP - 35
EP - 68
LA - eng
KW - Einstein-Vlasov system; Vlasov equation; global existence with small data; local existence
UR - http://eudml.org/doc/252216
ER -

References

top
  1. [1] S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, InterEditions, Paris, 1991. 
  2. [2] R. Bartnik, The mass of an asymptotically flat manifold, Commun. Pure Appl. Math. 34 (1986), 661-693. Zbl0598.53045
  3. [3] J. Binney and S. Tremaine, Galactic dynamics, Princeton University Press, Princeton, 1987. Zbl1130.85301
  4. [4] G. A. Burnett and A. D. Rendall, Existence of maximal hypersurfaces in some spherically symmetric spacetimes, Class. Quantum Grav. 13 (1996), 111-123. Zbl0843.53047
  5. [5] D. Christodoulou, Violation of cosmic censorship in the gravitational collapse of a dust cloud, Commun. Math. Phys. 93 (1984), 171-195. 
  6. [6] D. Christodoulou, The problem of a self-gravitating scalar field, Commun. Math. Phys. 105 (1986), 337-361. Zbl0608.35039
  7. [7] Y. Choquet-Bruhat, Problème de Cauchy pour le système intégro différentiel d'Einstein-Liouville, Ann. Inst. Fourier 21 (1971), 181-201. Zbl0208.14303
  8. [8] Y. Choquet-Bruhat and J. York, The Cauchy problem, in: General Relativity and Gravitation, Vol. 1, A. Held (ed.), Plenum, New York, 1980 99-172. 
  9. [9] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Wiley, New York, 1989. Zbl0729.35001
  10. [10] J. Ehlers, Survey of general relativity theory, in: Relativity, Astrophysics and Cosmology, W. Israel (ed.), Reidel, Dordrecht, 1973, 55-89. 
  11. [11] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222. Zbl0499.58003
  12. [12] S. W. Hawking and G. F. R. Ellis, The large-scale structure of space-time, Cambridge University Press, Cambridge, 1973. Zbl0265.53054
  13. [13] P.-L. Lions and B. Perthame, Propagation of moments and regularity for the three-dimensional Vlasov-Poisson system, Invent. Math. 105 (1991), 415-430. 
  14. [14] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Springer, New York, 1984. Zbl0537.76001
  15. [15] E. Malec and N. Ó Murchadha, Optical scalars and singularity avoidance in spherical spacetimes, Phys. Rev. D50 (1994), 6033-6036. 
  16. [16] J. E. Marsden and F. J. Tipler, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Phys. Rep. 66 (1980), 109-139. 
  17. [17] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Equations 95 (1992), 281-303. Zbl0810.35089
  18. [18] M. Reed and B. Simon, Methods of modern mathematical physics, Academic Press, New York, 1972. Zbl0242.46001
  19. [19] G. Rein, Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Commun. Math. Phys. 135 (1990), 41-78. Zbl0722.35091
  20. [20] G. Rein and A. D. Rendall, Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data, Commun. Math. Phys. 150 (1992), 561-583. Erratum: Commun. Math. Phys. 176 (1996), 475-478. Zbl0774.53056
  21. [21] G. Rein and A. D. Rendall, Global existence of classical solutions to the Vlasov-Poisson system in a three dimensional, cosmological setting, Arch. Rat. Mech. Anal. 126 (1994), 183-201. Zbl0808.35109
  22. [22] G. Rein, A. D. Rendall and J. Schaeffer, A regularity theorem for solutions of the spherically symmetric Vlasov-Einstein system, Commun. Math. Phys. 168 (1995), 467-478. Zbl0830.35141
  23. [23] A. D. Rendall, On the choice of matter model in general relativity, Approaches to Numerical Relativity, R. d'Inverno (ed.), Cambridge University Press, Cambridge, 1992, 94-102. 
  24. [24] A. D. Rendall, Cosmic censorship and the Vlasov equation, Class. Quantum Grav. 9 (1992), L99-L104. 
  25. [25] A. D. Rendall, Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry, Class. Quantum Grav. 12 (1995), 1517-1533. Zbl0823.53072
  26. [26] D. G. Swanson, Plasma Waves, Academic Press, Boston, 1989. 
  27. [27] S. L. Shapiro and S. A. Teukolsky, Relativistic stellar dynamics on the computer. I. Motivation and numerical method, Astrophys. J. 298 (1985), 34-57. 
  28. [28] R. M. Wald, General Relativity, Chicago University Press, Chicago, 1984. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.