Post-Newtonian approximations and equations of motion of general relativity

Gerhard Schäfer

Banach Center Publications (1997)

  • Volume: 41, Issue: 2, page 43-53
  • ISSN: 0137-6934

Abstract

top
A post-Newtonian approximation scheme for general relativity is defined using the Arnowitt-Deser-Misner formalism. The scheme is applied to perfect fluids and point-mass systems. The two-body point-mass Hamiltonian is given explicitly up to the post 2 . 5 -Newtonian order.

How to cite

top

Schäfer, Gerhard. "Post-Newtonian approximations and equations of motion of general relativity." Banach Center Publications 41.2 (1997): 43-53. <http://eudml.org/doc/252227>.

@article{Schäfer1997,
abstract = {A post-Newtonian approximation scheme for general relativity is defined using the Arnowitt-Deser-Misner formalism. The scheme is applied to perfect fluids and point-mass systems. The two-body point-mass Hamiltonian is given explicitly up to the post$^\{2.5\}$-Newtonian order.},
author = {Schäfer, Gerhard},
journal = {Banach Center Publications},
keywords = {ADM formalism; ADM Hamiltonian; post-Newtonian approximation scheme; perfect fluids; point-mass systems},
language = {eng},
number = {2},
pages = {43-53},
title = {Post-Newtonian approximations and equations of motion of general relativity},
url = {http://eudml.org/doc/252227},
volume = {41},
year = {1997},
}

TY - JOUR
AU - Schäfer, Gerhard
TI - Post-Newtonian approximations and equations of motion of general relativity
JO - Banach Center Publications
PY - 1997
VL - 41
IS - 2
SP - 43
EP - 53
AB - A post-Newtonian approximation scheme for general relativity is defined using the Arnowitt-Deser-Misner formalism. The scheme is applied to perfect fluids and point-mass systems. The two-body point-mass Hamiltonian is given explicitly up to the post$^{2.5}$-Newtonian order.
LA - eng
KW - ADM formalism; ADM Hamiltonian; post-Newtonian approximation scheme; perfect fluids; point-mass systems
UR - http://eudml.org/doc/252227
ER -

References

top
  1. [1] V. I. Arnold, Sur la géometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluids parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), 319-361. Zbl0148.45301
  2. [2] R. Arnowitt, S. Deser, and C. M. Misner, Gravitational-electromagnetic coupling and the classical self-energy problem, Phys. Rev. 120 (1960), 313-320. Zbl0096.22005
  3. [3] R. Arnowitt, S. Deser, and C. M. Misner, The dynamics of general relativity, in: Gravitation: An Introduction to Current Research, L. Witten (ed.), Wiley, New York 1962, 227-265. 
  4. [4] L. Blanchet, Energy losses by gravitational radiation in inspiralling compact binaries to five halves post-Newtonian order, Phys. Rev. D 54 (1996), 1417-1438. 
  5. [5] L. Blanchet, T. Damour, B. R. Iyer, C. M. Will, and A. G. Wiseman, Gravitational-radiation damping of compact systems to second post-Newtonian order, Phys. Rev. Lett. 74 (1995), 3515-3518. 
  6. [6] L. Blanchet and G. Schäfer, Higher-order gravitational radiation losses in binary systems, Mon. Not. R. astr. Soc. 239 (1989), 845-867; and Erratum: Mon. Not. R. astr. Soc. 242 (1990), 704. Zbl0671.70009
  7. [7] L. Blanchet and G. Schäfer, Gravitational wave tails and binary star systems, Class. Quantum Grav. 10 (1993), 2699-2721. 
  8. [8] T. Damour, Gravitational radiation and the motion of compact objects, in: Gravitational Radiation, N. Deruelle and T. Piran (eds.), North-Holland Publishing, Amsterdam 1983, 59-144. 
  9. [9] T. Damour, The problem of motion in Newtonian and Einsteinian gravity, in: 300 Years of Gravitation, S. W. Hawking and W. Israel (eds.), Cambridge University Press, Cambridge 1987, 128-198. Zbl0966.83509
  10. [10] T. Damour, L. P. Grishchuk, S. M. Kopejkin, and G. Schäfer, Higher-order relativistic dynamics of binary systems, in: Proc. 5th Marcel Grossmann Meeting on General Relativity, The University of Western Australia 1988, D. G. Blair and M. J. Buckingham (eds.), World Scientific, Singapore 1989, 451-459. 
  11. [11] T. Damour and G. Schäfer, Lagrangians for n point masses at the second post- Newtonian approximation to general relativity, General Relativity and Gravitation 17 (1985), 879-905. Zbl0568.70014
  12. [12] T. Damour and G. Schäfer, Higher-order relativistic periastron advances and binary pulsars, Nuovo Cimento B 101 (1988), 127-176. 
  13. [13] T. Damour and G. Schäfer, Redefinition of position variables and the reduction of higher order lagrangians, Journ. Math. Phys. 32 (1991), 127-134. Zbl0775.70025
  14. [14] B. S. DeWitt, Quantum theory of gravity. I. The canonical theory, Phys. Rev. 160 (1967), 1113-1148. Zbl0158.46504
  15. [15] J. Ehlers, Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie, in: Grundlagenprobleme der modernen Physik, J. Nitsch, J. Pfarr, and E.-W. Stachow (eds.), Bibliographisches Institut, Mannheim 1981, 65-84. 
  16. [16] L. P. Grishchuk and S. M. Kopejkin, Equations of motion for isolated bodies with relativistic corrections including the radiation reaction force, in: Relativity in Celestial Mechanics and Astrometry, J. Kovalevsky and V. A. Brumberg (eds.), Reidel, Dordrecht 1986, 19-34. 
  17. [17] D. D. Holm, Hamiltonian formalism for general-relativistic adiabatic fluids, Physica 17D (1985), 1-36. 
  18. [18] B. R. Iyer and C. M. Will, Post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies, Phys. Rev. D 52 (1995), 6882-6893. 
  19. [19] P. Jaranowski and G. Schäfer, Radiative 3.5 post-Newtonian ADM Hamiltonian for many-body point-mass systems, Phys. Rev. D (1996), submitted. 
  20. [20] W. Junker, G. Schäfer, Binary systems: higher order gravitational radiation damping and wave emission, Mon. Not. R. astr. Soc. 254 (1992), 146-164. 
  21. [21] S. M. Kopejkin, General-relativistic equations of binary motion for extended bodies, with conservative corrections and radiation damping, Sov. Astron. 29 (1985), 516-524. 
  22. [22] T. Ohta, H. Okamura, T. Kimura, and K. Hiida, Coordinate condition and higher order gravitational potential in canonical formalism, Progress of Theoretical Physics 51 (1974), 1598-1612. 
  23. [23] P. C. Peters, Gravitational radiation and the motion of two point masses, Phys. Rev. 136 (1964), B1224-B1232. 
  24. [24] T. Regge and T. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals of Physics 88 (1974), 286-318. Zbl0328.70016
  25. [25] G. Schäfer, The gravitational quadrupole radiation-reaction force and the canonical formalism of ADM, Ann. Phys. (N.Y.) 161 (1985), 81-100. 
  26. [26] G. Schäfer, Higher-order post-Newtonian hydrodynamics, in: Proc. 5th Marcel Grossmann Meeting on General Relativity, The University of Western Australia 1988, D. G. Blair and M. J. Buckingham (eds.) World Scientific, Singapore, 1986, 467-470. 
  27. [27] G. Schäfer, Reduced Hamiltonian formalism for general-relativistic adiabatic fluids and applications, Astron. Nachrichten 311 (1990), 213-217. Zbl0734.76095
  28. [28] G. Schäfer, The general relativistic two-body problem. Theory and experiment, in: Symposia Gaussiana, Proc. 2nd Gauss Symposium, Conf. A: Mathematical and Theoretical Physics, Munich 1993, M. Behara, R. Fritsch, and R. G. Lintz (eds.), Walter de Gruyter, Berlin 1995, 667-679. Zbl0851.70008
  29. [29] G. Schäfer and N. Wex, Second post-Newtonian motion of compact binaries, Phys. Lett. A 174 (1993), 196-205; and Erratum: Phys. Lett. A 177 (1993), 461. 
  30. [30] K. Sundermeyer, Constraint Dynamics, Lecture Notes in Physics 169, Springer-Verlag, Berlin 1982. 
  31. [31] K. S. Thorne, Multipole expansion of gravitational radiation, Rev. Mod. Phys. 52 (1980), 299-339. 
  32. [32] N. Wex and R. Rieth, The solution of the second post-Newtonian two-body problem, in: Symposia Gaussiana, Proc. 2nd Gauss Symposium, Conf. A: Mathematical and Theoretical Physics, Munich 1993, M. Behara, R. Fritsch, and R. G. Lintz (eds.), Walter de Gruyter, Berlin 1995, 681-693. Zbl0851.70009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.