Well posed reduced systems for the Einstein equations
Yvonne Choquet-Bruhat; James York
Banach Center Publications (1997)
- Volume: 41, Issue: 1, page 119-131
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Abrahams, A. Anderson, Y. Choquet-Bruhat and J. W. York, Einstein and Yang-Mills theories in hyperbolic form without gauge fixing, Phys. Rev. Letters 75 (1995), 3377-3381. Zbl1020.83503
- [2] A. Abrahams, A. Anderson, Y. Choquet-Bruhat and J. W. York, Geometrical hyperbolic systems for general relativity and gauge theories, submitted to Class. Quantum Grav., gr-qc/9605014. Zbl0866.58059
- [3] A. Abrahams, A. Anderson, Y. Choquet-Bruhat and J. W. York, A non-strictly hyperbolic system for the Einstein equations with arbitrary lapse and shift, submitted to C.R. Acad. Sci. Paris A. Zbl1020.83503
- [4] L. Bel, C.R. Acad. Sci. Paris 246 (1958), 3105.
- [5] C. Bona, J. Masso, E. Seidel and J. Stela, A new formalism for numerical relativity, Phys. Rev. Letters 75 (1995), 600-603.
- [6] Y. Choquet (Foures)-Bruhat, Sur L'Intégration des Équations de la Relativité Générale, J. Rat. Mechanics and Anal. 5 (1956), 951-966. Zbl0075.21602
- [7] Y. Choquet-Bruhat and D. Christodoulou, Elliptic systems in spaces on manifolds which are Euclidean at infinity,Acta. Math. 146 (1981), 129-150. Zbl0484.58028
- [8] Y. Choquet-Bruhat and T. Ruggeri, Hyperbolicity of the 3+1 system of Einstein equations, Commun. Math. Phys. 89 (1983), 269-275. Zbl0521.53034
- [9] Y. Choquet-Bruhat and J. W. York, The Cauchy problem in: General Relativity and Gravitation, A. Held (ed.), Plenum, New York, 1980, 99-172.
- [10] Y. Choquet-Bruhat and J. W. York, Geometrical well posed systems for the Einstein equations, C.R. Acad. Sci. Paris 321 (1995), Série I, 1089-1095. Zbl0839.53063
- [11] Y. Choquet-Bruhat and J. W. York, Mixed Elliptic and Hyperbolic Systems for the Einstein Equations, in: Gravitation, Electromagnetism and Geometric Structures, G. Ferrarese (ed.) Pythagora Editrice, Bologna, Italy, 1996, 55-73.
- [12] D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski Space, Princeton University Press, Princeton, 1993. Zbl0827.53055
- [13] H. Friedrich, Hyperbolic reductions for Einstein's equations, Class. Quantum Grav. 13 (1996), 1451-1459.
- [14] S. Frittelli and O. Reula, On the Newtonian limit of general relativity, Commun. Math. Phys. 166 (1994), 221-235. Zbl0812.35147
- [15] C. Lanczos, A remarkable property of the Riemann-Christoffel tensor in four dimensions, Ann. of Math. 39 (1938), 842-850. Zbl0019.37904
- [16] J. Leray, Hyperbolic Differential Equations, Institute for Advanced Study, Princeton, 1952.
- [17] J. Leray and Y. Ohya, Équations et systèmes non-linéaires, hyperboliques non-stricts, Math. Ann. 170 (1967), 167-205. Zbl0146.33701
- [18] A. Lichnerowicz, Problèmes globaux en Mécanique Relativiste, Hermann, Paris, 1939. Zbl0061.47002
- [19] J. W. York, Kinematics and dynamics of general relativity, in: Sources of Gravitaional Radiation, L. Smarr (ed.), Cambridge University Press, Cambridge, 1979, 83-126. Zbl0418.58016
- [20] J. W. York, Bel-Robinson Gravitational Superenergy and Flatness, in: Gravitation and Geometry, W. Rindler and A. Trautman (eds.), Bibliopolis, Naples, Italy, 1987, 497-505.