Coupling a branching process to an infinite dimensional epidemic process***
ESAIM: Probability and Statistics (2010)
- Volume: 14, page 53-64
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- F.G. Ball, The threshold behaviour of epidemic models. J. Appl. Probab. 20 (1983) 227–241.
- F.G. Ball and P. Donnelly, Strong approximations for epidemic models. Stoch. Proc. Appl.55 (1995) 1–21.
- A.D. Barbour and M. Kafetzaki, A host–parasite model yielding heterogeneous parasite loads. J. Math. Biol.31 (1993) 157–176.
- A.D. Barbour and S. Utev, Approximating the Reed-Frost epidemic process. Stoch. Proc. Appl.113 (2004) 173–197.
- M.S. Bartlett, An introduction to stochastic processes. Cambridge University Press (1956).
- O. Diekmann and J.A.P. Heesterbeek, Mathematical epidemiology of infectious diseases. Wiley, New York (2000).
- J.A.P. Heesterbeek, R0. CWI, Amsterdam (1992).
- D.G. Kendall, Deterministic and stochastic epidemics in closed populations. Proc. Third Berk. Symp. Math. Stat. Probab.4 (1956) 149–165.
- T.G. Kurtz, Limit theorems and diffusion approximations for density dependent Markov chains. Math. Prog. Study5 (1976) 67–78.
- T.G. Kurtz, Approximation of population processes, volume 36 of CBMS-NSF Regional Conf. Series in Appl. Math. SIAM, Philadelphia (1981).
- C.J. Luchsinger, Stochastic models of a parasitic infection, exhibiting three basic reproduction ratios. J. Math. Biol.42 (2002) 532–554.
- C.J. Luchsinger, Approximating the long-term behaviour of a model for parasitic infection. J. Math. Biol.42 (2002) 555–581.
- P. Whittle, The outcome of a stochastic epidemic – a note on Bailey's paper. Biometrika42 (1955) 116–122.