On analyticity of Ornstein-Uhlenbeck semigroups

Beniamin Goldys

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1999)

  • Volume: 10, Issue: 3, page 131-140
  • ISSN: 1120-6330

Abstract

top
Let ( R t be a transition semigroup of the Hilbert space-valued nonsymmetric Ornstein-Uhlenbeck process and let μ denote its Gaussian invariant measure. We show that the semigroup ( R t is analytic in L 2 μ if and only if its generator is variational. In particular, we show that the transition semigroup of a finite dimensional Ornstein-Uhlenbeck process is analytic if and only if the Wiener process is nondegenerate.

How to cite

top

Goldys, Beniamin. "On analyticity of Ornstein-Uhlenbeck semigroups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 10.3 (1999): 131-140. <http://eudml.org/doc/252271>.

@article{Goldys1999,
abstract = {Let \( (R\_\{t\} \) be a transition semigroup of the Hilbert space-valued nonsymmetric Ornstein-Uhlenbeck process and let \( \mu \) denote its Gaussian invariant measure. We show that the semigroup \( (R\_\{t\} \) is analytic in \( L^\{2\} (\mu) \) if and only if its generator is variational. In particular, we show that the transition semigroup of a finite dimensional Ornstein-Uhlenbeck process is analytic if and only if the Wiener process is nondegenerate.},
author = {Goldys, Beniamin},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Ornstein-Uhlenbeck semigroup; Bilinear form; Variational generator; Polynomial chaos; Second quantization; bilinear form; variational generator; polynomial chaos; second quantization},
language = {eng},
month = {9},
number = {3},
pages = {131-140},
publisher = {Accademia Nazionale dei Lincei},
title = {On analyticity of Ornstein-Uhlenbeck semigroups},
url = {http://eudml.org/doc/252271},
volume = {10},
year = {1999},
}

TY - JOUR
AU - Goldys, Beniamin
TI - On analyticity of Ornstein-Uhlenbeck semigroups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1999/9//
PB - Accademia Nazionale dei Lincei
VL - 10
IS - 3
SP - 131
EP - 140
AB - Let \( (R_{t} \) be a transition semigroup of the Hilbert space-valued nonsymmetric Ornstein-Uhlenbeck process and let \( \mu \) denote its Gaussian invariant measure. We show that the semigroup \( (R_{t} \) is analytic in \( L^{2} (\mu) \) if and only if its generator is variational. In particular, we show that the transition semigroup of a finite dimensional Ornstein-Uhlenbeck process is analytic if and only if the Wiener process is nondegenerate.
LA - eng
KW - Ornstein-Uhlenbeck semigroup; Bilinear form; Variational generator; Polynomial chaos; Second quantization; bilinear form; variational generator; polynomial chaos; second quantization
UR - http://eudml.org/doc/252271
ER -

References

top
  1. Chojnowska-Michalik, A. - Goldys, B., Existence, uniqueness and invariant measures for stochastic semi-linear equations on Hilbert spaces. Probability Theory and Related Fields, 102, 1995, 331-356. Zbl0859.60057MR1339737DOI10.1007/BF01192465
  2. Chojnowska-Michalik, A. - Goldys, B., Nonsymmetric Ornstein-Uhlenbeck semigroup as second quantized operator. J. Math. Kyoto Univ., 36, 1996, 481-498. Zbl0882.47013MR1417822
  3. Chojnowska, A. - Goldys, B., On regularity properties of nonsymmetric Ornstein-Uhlenbeck semigroup in L p μ spaces. Stochastics and Stochastics Rep., 59, 1996, 183-209. Zbl0876.60039MR1427738
  4. Da Prato, G., Null controllability and strong Feller property of Markov transition semigroups. Nonlinear Analysis, Theory, Methods & Applications, 25, 1995, 941-949. Zbl0838.60048MR1350717DOI10.1016/0362-546X(95)00089-E
  5. Da Prato, G. - Lunardi, A., On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. Zbl0846.47004MR1343161DOI10.1006/jfan.1995.1084
  6. Da Prato, G. - Zabczyk, J., Stochastic equations in infinite dimensions. Cambridge University Press, 1992. Zbl1140.60034MR1207136DOI10.1017/CBO9780511666223
  7. Da Prato, G. - Zabczyk, J., Ergodicity for infinite dimensional systems. Cambridge University Press, 1996. Zbl0849.60052MR1417491DOI10.1017/CBO9780511662829
  8. Fuhrman, M., Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces. Studia Mathematica, 115, 1995, 53-71. Zbl0830.47033MR1347432
  9. Lunardi, A., On the Ornstein-Uhlenbeck operator in L 2 μ spaces with respect to invariant measures. Trans. Amer. Math. Soc., 349 (1997) 155-169. Zbl0890.35030MR1389786DOI10.1090/S0002-9947-97-01802-3
  10. Ma, Z. M. - Röckner, M., Dirichlet forms. Springer, 1992. 
  11. Schmuland, B., Non-symmetric Ornstein-Uhlenbeck processes in Banach space via Dirichlet forms. Can. J. Math., 45, 1993, 1324-1338. Zbl0801.31003MR1247550DOI10.4153/CJM-1993-075-6
  12. Simon, B., The P ϕ 2 Euclidean (quantum) field theory. Zbl1175.81146

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.