Identification of a localized source in an interstellar cloud: an inverse problem

Meri Lisi; Silvia Totaro

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2005)

  • Volume: 16, Issue: 3, page 203-209
  • ISSN: 1120-6330

Abstract

top
We study an inverse problem for photon transport in an interstellar cloud. In particular, we evaluate the position x 0 of a localized source q x = q 0 δ x - x 0 , inside a nebula (for example, a star). We assume that the photon transport phenomenon is one-dimensional. Since a nebula moves slowly in time, the number of photons U inside the cloud changes slowly in time. For this reason, we consider the so-called quasi-static approximation u to the exact solution U . By using semigroup theory, we prove existence and uniqueness of u . Because of some monotonic properties of the operator which describes u as a function of q , the «position» of the source can be evaluated.

How to cite

top

Lisi, Meri, and Totaro, Silvia. "Identification of a localized source in an interstellar cloud: an inverse problem." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.3 (2005): 203-209. <http://eudml.org/doc/252284>.

@article{Lisi2005,
abstract = {We study an inverse problem for photon transport in an interstellar cloud. In particular, we evaluate the position $x_\{0\}$ of a localized source $q(x) = q_\{0\} \delta(x-x_\{0\})$, inside a nebula (for example, a star). We assume that the photon transport phenomenon is one-dimensional. Since a nebula moves slowly in time, the number of photons $U$ inside the cloud changes slowly in time. For this reason, we consider the so-called quasi-static approximation $u$ to the exact solution $U$. By using semigroup theory, we prove existence and uniqueness of $u$. Because of some monotonic properties of the operator which describes $u$ as a function of $q$, the «position» of the source can be evaluated.},
author = {Lisi, Meri, Totaro, Silvia},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Inverse problems; Quasi-static approximation; Semigroup theory; inverse problems; quasi-static approximation; semigroup theory},
language = {eng},
month = {9},
number = {3},
pages = {203-209},
publisher = {Accademia Nazionale dei Lincei},
title = {Identification of a localized source in an interstellar cloud: an inverse problem},
url = {http://eudml.org/doc/252284},
volume = {16},
year = {2005},
}

TY - JOUR
AU - Lisi, Meri
AU - Totaro, Silvia
TI - Identification of a localized source in an interstellar cloud: an inverse problem
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/9//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 3
SP - 203
EP - 209
AB - We study an inverse problem for photon transport in an interstellar cloud. In particular, we evaluate the position $x_{0}$ of a localized source $q(x) = q_{0} \delta(x-x_{0})$, inside a nebula (for example, a star). We assume that the photon transport phenomenon is one-dimensional. Since a nebula moves slowly in time, the number of photons $U$ inside the cloud changes slowly in time. For this reason, we consider the so-called quasi-static approximation $u$ to the exact solution $U$. By using semigroup theory, we prove existence and uniqueness of $u$. Because of some monotonic properties of the operator which describes $u$ as a function of $q$, the «position» of the source can be evaluated.
LA - eng
KW - Inverse problems; Quasi-static approximation; Semigroup theory; inverse problems; quasi-static approximation; semigroup theory
UR - http://eudml.org/doc/252284
ER -

References

top
  1. BELLENI MORANTE, A. - MONACO, R. - SALVARANI, F., Approximated solutions of photon transport in a time dependent region. Transp. Theory Stat. Phys., 30, 2001, 421-438. Zbl1086.45503
  2. CERCIGNANI, C., The Boltzmann Equation and its Applications. Springer-Verlag, New York1987. Zbl0646.76001MR1313028DOI10.1007/978-1-4612-1039-9
  3. DYSON, J.E. - WILLIAMS, D.A., The physics of interstellar medium. Institute of Physics Publishing, Bristol1997. Zbl1090.85500
  4. LARSEN, E.W., Solution of three dimensional inverse transport problems. Transp. Theory Stat. Phys., 17, 1988, 147-167. Zbl0653.45006MR963049DOI10.1080/00411458808230860
  5. LISI, M. - TOTARO, S., Inverse problems related to photon transport in an interstellar cloud. Transp. Theory Stat. Phys., 32, 3-4, 2003, 341-359. Zbl1029.82040MR2014721DOI10.1081/TT-120024767
  6. LISI, M. - TOTARO, S., Photon transport with a localized source in locally convex spaces. Math. Meth. Appl. Sci., 2005, in press. Zbl1107.46050MR2228353DOI10.1002/mma.713
  7. MCCORMICK, N.J., Methods for solving inverse problems for radiation transport, an update. Transp. Theory Stat. Phys., 15, 6-7, 1986, 759-772. Zbl0619.35107MR880891DOI10.1080/00411458608212714
  8. POMRANING, G.C., Radiation hydrodynamics. Pergamon Press, Oxford1973. 
  9. SPITZER, L., Physical Processes in the Interstellar Medium. John Wiley & Sons, Toronto1978. 
  10. ZWEIFEL, P.F., The canonical inverse problem. Transp. Theory Stat. Phys., 28, 1999, 171-179. Zbl0948.65145MR1669041DOI10.1080/00411459908205655

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.