A computational approach to fractures in crystal growth

Matteo Novaga; Emanuele Paolini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1999)

  • Volume: 10, Issue: 1, page 47-56
  • ISSN: 1120-6330

Abstract

top
In the present paper, we motivate and describe a numerical approach in order to detect the creation of fractures in a facet of a crystal evolving by anisotropic mean curvature. The result appears to be in accordance with the known examples of facet-breaking. Graphical simulations are included.

How to cite

top

Novaga, Matteo, and Paolini, Emanuele. "A computational approach to fractures in crystal growth." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 10.1 (1999): 47-56. <http://eudml.org/doc/252288>.

@article{Novaga1999,
abstract = {In the present paper, we motivate and describe a numerical approach in order to detect the creation of fractures in a facet of a crystal evolving by anisotropic mean curvature. The result appears to be in accordance with the known examples of facet-breaking. Graphical simulations are included.},
author = {Novaga, Matteo, Paolini, Emanuele},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Nonlinear partial differential equations of parabolic type; Crystal growth; Non-smooth analysis},
language = {eng},
month = {3},
number = {1},
pages = {47-56},
publisher = {Accademia Nazionale dei Lincei},
title = {A computational approach to fractures in crystal growth},
url = {http://eudml.org/doc/252288},
volume = {10},
year = {1999},
}

TY - JOUR
AU - Novaga, Matteo
AU - Paolini, Emanuele
TI - A computational approach to fractures in crystal growth
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1999/3//
PB - Accademia Nazionale dei Lincei
VL - 10
IS - 1
SP - 47
EP - 56
AB - In the present paper, we motivate and describe a numerical approach in order to detect the creation of fractures in a facet of a crystal evolving by anisotropic mean curvature. The result appears to be in accordance with the known examples of facet-breaking. Graphical simulations are included.
LA - eng
KW - Nonlinear partial differential equations of parabolic type; Crystal growth; Non-smooth analysis
UR - http://eudml.org/doc/252288
ER -

References

top
  1. Almgren, F. J. - Taylor, J., Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Diff. Geom., 42, 1995, 1-22. Zbl0867.58020MR1350693
  2. Almgren, F. J. - Taylor, J. E. - Wang, L., Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. Zbl0783.35002MR1205983DOI10.1137/0331020
  3. Bellettini, G. - Novaga, M., Approximation and comparison for non-smooth anisotropic motion by mean curvature in R N . Math. Mod. Meth. Appl. Sc., to appear. Zbl1016.53048MR1749692DOI10.1142/S0218202500000021
  4. Bellettini, G. - Novaga, M. - Paolini, M., Facet-breaking for three-dimensional crystals evolving by mean curvature. Interfaces and Free Boundaries, to appear. Zbl0934.49023MR1865105DOI10.4171/IFB/3
  5. Bellettini, G. - Paolini, M. - Venturini, S., Some results on surface measures in Calculus of Variations. Ann. Mat. Pura Appl., 170, 1996, 329-359. Zbl0890.49020MR1441625DOI10.1007/BF01758994
  6. Brezis, H., Operateurs Maximaux Monotones. North-Holland, Amsterdam1973. 
  7. Cahn, J. W. - Handwerker, C. A. - Taylor, J. E., Geometric models of crystal growth. Acta Metall. Mater., 40, 1992, 1443-1474. 
  8. Giga, M.-H. - Giga, Y., A subdifferential interpretation of crystalline motion under nonuniform driving force. Dynamical Systems and Differential Equations, 1, 1998, 276-287. MR1720610
  9. Giga, Y. - Gurtin, M. E. - Matias, J., On the dynamics of crystalline motion. Japan Journal of Industrial and Applied Mathematics, 15, 1998, 7-50. MR1610305DOI10.1007/BF03167395
  10. Taylor, J. E., Crystalline variational problems. Bull. Amer. Math. Soc. (N.S.), 84, 1978, 568-588. Zbl0392.49022MR493671
  11. Taylor, J. E., Geometric crystal growth in 3D via facetted interfaces. In: Computational Crystal Growers Workshop. Selected Lectures in Mathematics, Amer. Math. Soc., 1992, 111-113. Zbl0776.65002MR1224451
  12. Taylor, J. E., Mean curvature and weighted mean curvature. Acta Metall. Mater., 40, 1992, 1475-1485. 
  13. Yunger, J., Facet Stepping and Motion By Crystalline Curvature. Ph. D. Thesis, 1998. MR2698605

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.