Density of chaotic dynamics in periodically forced pendulum-type equations
Elena Bosetto; Enrico Serra; Susanna Terracini
- Volume: 12, Issue: 2, page 107-113
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBosetto, Elena, Serra, Enrico, and Terracini, Susanna. "Density of chaotic dynamics in periodically forced pendulum-type equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 12.2 (2001): 107-113. <http://eudml.org/doc/252302>.
@article{Bosetto2001,
abstract = {We announce that a class of problems containing the classical periodically forced pendulum equation displays the main features of chaotic dynamics for a dense set of forcing terms in a space of periodic functions with zero mean value. The approach is based on global variational methods.},
author = {Bosetto, Elena, Serra, Enrico, Terracini, Susanna},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Heteroclinic solutions; Variational Methods; Implicit Function Theorem; heteroclinic solutions; varational methods; implicit function theorem},
language = {eng},
month = {6},
number = {2},
pages = {107-113},
publisher = {Accademia Nazionale dei Lincei},
title = {Density of chaotic dynamics in periodically forced pendulum-type equations},
url = {http://eudml.org/doc/252302},
volume = {12},
year = {2001},
}
TY - JOUR
AU - Bosetto, Elena
AU - Serra, Enrico
AU - Terracini, Susanna
TI - Density of chaotic dynamics in periodically forced pendulum-type equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2001/6//
PB - Accademia Nazionale dei Lincei
VL - 12
IS - 2
SP - 107
EP - 113
AB - We announce that a class of problems containing the classical periodically forced pendulum equation displays the main features of chaotic dynamics for a dense set of forcing terms in a space of periodic functions with zero mean value. The approach is based on global variational methods.
LA - eng
KW - Heteroclinic solutions; Variational Methods; Implicit Function Theorem; heteroclinic solutions; varational methods; implicit function theorem
UR - http://eudml.org/doc/252302
ER -
References
top- Alessio, F. - Calanchi, M. - Serra, E., Complex dynamics in a class of reversible equations. Progr. in Diff. Eqs. Appl., 43, Birkhäuser, Boston2001, 147-159. Zbl0994.34029MR1800617
- Alessio, F. - Caldiroli, P. - Montecchiari, P., Genericity of the multibump dynamics for almost periodic Duffing-like systems. Proc. Royal Soc. Edinburgh, 129A, 1999, 885-901. Zbl0941.34032MR1719214DOI10.1017/S0308210500030985
- Ambrosetti, A. - Badiale, M., Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. IHP, Anal. non Linéaire, 15, 1998, 233-252. Zbl1004.37043MR1614571DOI10.1016/S0294-1449(97)89300-6
- Bosetto, E. - Serra, E., A variational approach to chaotic dynamics in periodically forced nonlinear oscillators. Ann. IHP, Anal. non Linéaire, 17, 2000, 673-709. Zbl0978.37024MR1804651DOI10.1016/S0294-1449(00)00054-8
- Bosetto, E. - Serra, E. - Terracini, S., Generic-type results for chaotic dynamics in equations with periodic forcing terms. Preprint 2000. Zbl1012.34040MR1890600DOI10.1006/jdeq.2001.4053
- Buffoni, B. - Séré, E., A global condition for quasi-random behavior in a class of conservative systems. Comm. Pure Appl. Math., 49, 1996, 285-305. Zbl0860.58027MR1374173DOI10.1002/(SICI)1097-0312(199603)49:3<285::AID-CPA3>3.3.CO;2-#
- Calanchi, M. - Serra, E., Homoclinic solutions to periodic motions in a class of reversible equations. Calc. Var. and PDEs, 9, 1999, 157-184. Zbl0967.34041MR1714117DOI10.1007/s005260050136
- Martinez-Amores, P. - Mawhin, J. - Ortega, R. - Willem, M., Generic results for the existence of nondegenerate periodic solutions of some differential systems with periodic nonlinearities. J. Diff. Eq., 91, 1991, 138-148. Zbl0742.34043MR1106121DOI10.1016/0022-0396(91)90135-V
- Mather, J. N., Variational construction of orbits of twist diffeomorphisms. J. of AMS, 4, 1991, 207-263. Zbl0737.58029MR1080112DOI10.2307/2939275
- Rabinowitz, P. H., Heteroclinics for a reversible Hamiltonian system. Ergod. Th. and Dyn. Sys., 14, 1994, 817-829. Zbl0818.34025MR1304144DOI10.1017/S0143385700008178
- Rabinowitz, P. H., Heteroclinics for a reversible Hamiltonian system, 2. Diff. and Int. Eq., 7, 1994, 1557-1572. Zbl0835.34050MR1269671
- Rabinowitz, P. H., Connecting orbits for a reversible Hamiltonian system. Ergod. Th. and Dyn. Sys., to appear. Zbl0981.37020MR1804957DOI10.1017/S0143385700000985
- Séré, E., Looking for the Bernoulli shift. Ann. IHP, Anal. non Linéaire, 10, 1993, 561-590. Zbl0803.58013MR1249107
- Serra, E. - Tarallo, M. - Terracini, S., On the structure of the solution set of forced pendulum-type equations. J. Diff. Eq., 131, 1996, 189-208. Zbl0864.34038MR1419011DOI10.1006/jdeq.1996.0160
- Terracini, S., Non degeneracy and chaotic motions for a class of almost-periodic Lagrangian systems. Nonlin. Anal. TMA, 37, 1999, 337-361. Zbl0948.37022MR1694395DOI10.1016/S0362-546X(98)00051-0
- Wiggins, S., Introduction to applied nonlinear dynamical systems and chaos. Springer-Verlag, New York1990. Zbl1027.37002MR1056699
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.