Density of chaotic dynamics in periodically forced pendulum-type equations

Elena Bosetto; Enrico Serra; Susanna Terracini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2001)

  • Volume: 12, Issue: 2, page 107-113
  • ISSN: 1120-6330

Abstract

top
We announce that a class of problems containing the classical periodically forced pendulum equation displays the main features of chaotic dynamics for a dense set of forcing terms in a space of periodic functions with zero mean value. The approach is based on global variational methods.

How to cite

top

Bosetto, Elena, Serra, Enrico, and Terracini, Susanna. "Density of chaotic dynamics in periodically forced pendulum-type equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 12.2 (2001): 107-113. <http://eudml.org/doc/252302>.

@article{Bosetto2001,
abstract = {We announce that a class of problems containing the classical periodically forced pendulum equation displays the main features of chaotic dynamics for a dense set of forcing terms in a space of periodic functions with zero mean value. The approach is based on global variational methods.},
author = {Bosetto, Elena, Serra, Enrico, Terracini, Susanna},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Heteroclinic solutions; Variational Methods; Implicit Function Theorem; heteroclinic solutions; varational methods; implicit function theorem},
language = {eng},
month = {6},
number = {2},
pages = {107-113},
publisher = {Accademia Nazionale dei Lincei},
title = {Density of chaotic dynamics in periodically forced pendulum-type equations},
url = {http://eudml.org/doc/252302},
volume = {12},
year = {2001},
}

TY - JOUR
AU - Bosetto, Elena
AU - Serra, Enrico
AU - Terracini, Susanna
TI - Density of chaotic dynamics in periodically forced pendulum-type equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2001/6//
PB - Accademia Nazionale dei Lincei
VL - 12
IS - 2
SP - 107
EP - 113
AB - We announce that a class of problems containing the classical periodically forced pendulum equation displays the main features of chaotic dynamics for a dense set of forcing terms in a space of periodic functions with zero mean value. The approach is based on global variational methods.
LA - eng
KW - Heteroclinic solutions; Variational Methods; Implicit Function Theorem; heteroclinic solutions; varational methods; implicit function theorem
UR - http://eudml.org/doc/252302
ER -

References

top
  1. Alessio, F. - Calanchi, M. - Serra, E., Complex dynamics in a class of reversible equations. Progr. in Diff. Eqs. Appl., 43, Birkhäuser, Boston2001, 147-159. Zbl0994.34029MR1800617
  2. Alessio, F. - Caldiroli, P. - Montecchiari, P., Genericity of the multibump dynamics for almost periodic Duffing-like systems. Proc. Royal Soc. Edinburgh, 129A, 1999, 885-901. Zbl0941.34032MR1719214DOI10.1017/S0308210500030985
  3. Ambrosetti, A. - Badiale, M., Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. IHP, Anal. non Linéaire, 15, 1998, 233-252. Zbl1004.37043MR1614571DOI10.1016/S0294-1449(97)89300-6
  4. Bosetto, E. - Serra, E., A variational approach to chaotic dynamics in periodically forced nonlinear oscillators. Ann. IHP, Anal. non Linéaire, 17, 2000, 673-709. Zbl0978.37024MR1804651DOI10.1016/S0294-1449(00)00054-8
  5. Bosetto, E. - Serra, E. - Terracini, S., Generic-type results for chaotic dynamics in equations with periodic forcing terms. Preprint 2000. Zbl1012.34040MR1890600DOI10.1006/jdeq.2001.4053
  6. Buffoni, B. - Séré, E., A global condition for quasi-random behavior in a class of conservative systems. Comm. Pure Appl. Math., 49, 1996, 285-305. Zbl0860.58027MR1374173DOI10.1002/(SICI)1097-0312(199603)49:3<285::AID-CPA3>3.3.CO;2-#
  7. Calanchi, M. - Serra, E., Homoclinic solutions to periodic motions in a class of reversible equations. Calc. Var. and PDEs, 9, 1999, 157-184. Zbl0967.34041MR1714117DOI10.1007/s005260050136
  8. Martinez-Amores, P. - Mawhin, J. - Ortega, R. - Willem, M., Generic results for the existence of nondegenerate periodic solutions of some differential systems with periodic nonlinearities. J. Diff. Eq., 91, 1991, 138-148. Zbl0742.34043MR1106121DOI10.1016/0022-0396(91)90135-V
  9. Mather, J. N., Variational construction of orbits of twist diffeomorphisms. J. of AMS, 4, 1991, 207-263. Zbl0737.58029MR1080112DOI10.2307/2939275
  10. Rabinowitz, P. H., Heteroclinics for a reversible Hamiltonian system. Ergod. Th. and Dyn. Sys., 14, 1994, 817-829. Zbl0818.34025MR1304144DOI10.1017/S0143385700008178
  11. Rabinowitz, P. H., Heteroclinics for a reversible Hamiltonian system, 2. Diff. and Int. Eq., 7, 1994, 1557-1572. Zbl0835.34050MR1269671
  12. Rabinowitz, P. H., Connecting orbits for a reversible Hamiltonian system. Ergod. Th. and Dyn. Sys., to appear. Zbl0981.37020MR1804957DOI10.1017/S0143385700000985
  13. Séré, E., Looking for the Bernoulli shift. Ann. IHP, Anal. non Linéaire, 10, 1993, 561-590. Zbl0803.58013MR1249107
  14. Serra, E. - Tarallo, M. - Terracini, S., On the structure of the solution set of forced pendulum-type equations. J. Diff. Eq., 131, 1996, 189-208. Zbl0864.34038MR1419011DOI10.1006/jdeq.1996.0160
  15. Terracini, S., Non degeneracy and chaotic motions for a class of almost-periodic Lagrangian systems. Nonlin. Anal. TMA, 37, 1999, 337-361. Zbl0948.37022MR1694395DOI10.1016/S0362-546X(98)00051-0
  16. Wiggins, S., Introduction to applied nonlinear dynamical systems and chaos. Springer-Verlag, New York1990. Zbl1027.37002MR1056699

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.