Existence and approximation results for gradient flows

Riccarda Rossi; Giuseppe Savaré

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2004)

  • Volume: 15, Issue: 3-4, page 183-196
  • ISSN: 1120-6330

Abstract

top
This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space H u ' ( t ) + φ ( u ( t ) ) 0 a.e. in ( 0 , T ) , u ( 0 ) = u 0 , where φ : H ( - , + ] is a proper, lower semicontinuous functional which is not supposed to be a (smooth perturbation of a) convex functional and φ is (a suitable limiting version of) its subdifferential. The interest for this kind of equations is motivated by a number of examples, which show that several mathematical models describing phase transitions phenomena and leading to systems of evolutionary PDEs have a common gradient flow structure. In particular, when quasi-stationary models are considered, highly non-convex functionals naturally arise. We will present some existence results for the solution of the gradient flow equation by exploiting a variational approximation technique, featuring some ideas from the theory of Minimizing Movements.

How to cite

top

Rossi, Riccarda, and Savaré, Giuseppe. "Existence and approximation results for gradient flows." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.3-4 (2004): 183-196. <http://eudml.org/doc/252318>.

@article{Rossi2004,
abstract = {This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space $H$\[ \{\left\lbrace \begin\{array\}\{ll\} u^\{\prime \}(t) + \partial \phi (u(t)) \ni 0 \quad \text\{a.e. in\} \, (0,T),\\ u(0) = u\_\{0\}, \end\{array\}\right.\} \] where $\phi : H \rightarrow (-\infty , +\infty \,]$ is a proper, lower semicontinuous functional which is not supposed to be a (smooth perturbation of a) convex functional and $\partial \phi $ is (a suitable limiting version of) its subdifferential. The interest for this kind of equations is motivated by a number of examples, which show that several mathematical models describing phase transitions phenomena and leading to systems of evolutionary PDEs have a common gradient flow structure. In particular, when quasi-stationary models are considered, highly non-convex functionals naturally arise. We will present some existence results for the solution of the gradient flow equation by exploiting a variational approximation technique, featuring some ideas from the theory of Minimizing Movements.},
author = {Rossi, Riccarda, Savaré, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Phase transitions; Evolution problems; Gradient flows; Minimizing Movements; Minimizing movements},
language = {eng},
month = {12},
number = {3-4},
pages = {183-196},
publisher = {Accademia Nazionale dei Lincei},
title = {Existence and approximation results for gradient flows},
url = {http://eudml.org/doc/252318},
volume = {15},
year = {2004},
}

TY - JOUR
AU - Rossi, Riccarda
AU - Savaré, Giuseppe
TI - Existence and approximation results for gradient flows
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/12//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 3-4
SP - 183
EP - 196
AB - This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space $H$\[ {\left\lbrace \begin{array}{ll} u^{\prime }(t) + \partial \phi (u(t)) \ni 0 \quad \text{a.e. in} \, (0,T),\\ u(0) = u_{0}, \end{array}\right.} \] where $\phi : H \rightarrow (-\infty , +\infty \,]$ is a proper, lower semicontinuous functional which is not supposed to be a (smooth perturbation of a) convex functional and $\partial \phi $ is (a suitable limiting version of) its subdifferential. The interest for this kind of equations is motivated by a number of examples, which show that several mathematical models describing phase transitions phenomena and leading to systems of evolutionary PDEs have a common gradient flow structure. In particular, when quasi-stationary models are considered, highly non-convex functionals naturally arise. We will present some existence results for the solution of the gradient flow equation by exploiting a variational approximation technique, featuring some ideas from the theory of Minimizing Movements.
LA - eng
KW - Phase transitions; Evolution problems; Gradient flows; Minimizing Movements; Minimizing movements
UR - http://eudml.org/doc/252318
ER -

References

top
  1. ALMGREN, F. - TAYLOR, J.E. - WANG, L., Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, n. 2, 1993, 387-438. Zbl0783.35002MR1205983DOI10.1137/0331020
  2. AMBROSIO, L., Minimizing Movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 19, n. 5, 1995, 191-246. Zbl0957.49029MR1387558
  3. AMBROSIO, L. - GIGLI, N. - SAVARÉ, G., Gradient Flows. Lecture Notes in Mathematics ETH Zürich, Birkhäuser, Basel. To appear. 
  4. BAIOCCHI, C., Discretization of evolution variational inequalities. In: F. COLOMBINI - A. MARINO - L. MODICA - S. SPAGNOLO (eds.), Partial differential equations and the calculus of variations. Vol I, Birkäuser, Boston1989, 59-62. Zbl0677.65068MR1034002
  5. BRESSAN, A. - CELLINA, A. - COLOMBO, G., Upper semicontinuous differential inclusions without convexity. Proc. Amer. Math. Soc., 106, n. 3, 1989, 771-775. Zbl0698.34014MR969314DOI10.2307/2047434
  6. BREZIS, H., On some degenerate nonlinear parabolic equations. Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968), Amer. Math. Soc., Providence, R.I., 1970, 28-38. Zbl0231.47034MR273468
  7. BREZIS, H., Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. Nonlinear Functional Analysis, Proc. Sympos. Math. Res. Center, Univ. Wisconsin, Madison1971, Academic Press, New York1971, 101-156. Zbl0278.47033MR394323
  8. BREZIS, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Math. Stud., No. 5, North-Holland, Amsterdam1973. Zbl0252.47055MR348562
  9. CAGINALP, G., An analysis of a phase field model of a free boundary. Arch. Rational Mech. Anal., 92, 1986, 205-245. Zbl0608.35080MR816623DOI10.1007/BF00254827
  10. CAGINALP, G., Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. Phys. Rev. A (3), 39, n. 11, 1989, 5887-5896. Zbl1027.80505MR998924DOI10.1103/PhysRevA.39.5887
  11. CRANDALL, M.G. - LIGGETT, T.M., Generation of semigroups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 1971, 265-298. Zbl0226.47038MR287357
  12. CRANDALL, M.G. - PAZY, A., Semigroups of nonlinear contractions and dissipative sets. J. Functional Analysis, 3, 1969, 376-418. Zbl0182.18903MR243383
  13. DE GIORGI, E. - MARINO, A. - TOSQUES, M., Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acc. Lincei Rend. fis., s. 8, v. 68, 1980, 180-187. Zbl0465.47041MR636814
  14. DE GIORGI, E., New problems on minimizing movements. In: C. BAIOCCHI - J.-L. LIONS (eds.), Boundary Value Problems for PDE and Applications. Masson, 1993, 81-98. Zbl0851.35052MR1260440
  15. JORDAN, R. - KINDERLEHRER, D. - Otto, F., The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal., 29, n. 1, 1998, 1-17. Zbl0915.35120MR1617171DOI10.1137/S0036141096303359
  16. KOMURA, Y., Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan, 19, 1967, 493-507. Zbl0163.38302MR216342
  17. LEVITAS, V.I. - MIELKE, A. - THEIL, F., A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal., 162, n. 2, 2002, 137-177. Zbl1012.74054MR1897379DOI10.1007/s002050200194
  18. LUCKHAUS, S., Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature. European J. Appl. Math., 1, n. 2, 1990, 101-111. Zbl0734.35159MR1117346DOI10.1017/S0956792500000103
  19. MARINO, A. - SACCON, C. - TOSQUES, M., Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16, n. 2, 1989, 281-330. Zbl0699.49015MR1041899
  20. MODICA, L., Gradient theory of phase transitions and minimal interface criterion. Arch. Rational Mech. Anal., 98, 1986, 123-142. Zbl0616.76004MR866718DOI10.1007/BF00251230
  21. MODICA, L. - MORTOLA, S., Un esempio di Γ -convergenza. Boll. Un. Mat. Ital. B, 14, 1977, 285-299. Zbl0356.49008MR445362
  22. NOCHETTO, R. - SAVARÉ, G. - VERDI, C., A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math., 53, n. 5, 2000, 525-589. Zbl1021.65047MR1737503DOI10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M
  23. PLOTNIKOV, P.I. - STAROVOITOV, V.N., The Stefan problem with surface tension as the limit of a phase field model. Differential Equations, 29, 1993, 395-404. Zbl0802.35165MR1236334
  24. ROSSI, R. - SAVARÉ, G., Gradient flows of non convex functionals in Hilbert spaces and applications. Preprint IMATI-CNR, n. 7-PV, 2004, 1-45. Zbl1116.34048
  25. RULLA, J., Error analysis for implicit approximations to solutions to Cauchy problems. SIAM J. Numer. Anal., 33, n. 1, 1996, 68-87. Zbl0855.65102MR1377244DOI10.1137/0733005
  26. SAVARÉ, G., Weak solutions and maximal regularity for abstract evolution inequalities. Adv. Math. Sci. Appl., 6, n. 2, 1996, 377-418. Zbl0858.35073MR1411975
  27. SCHÄTZLE, R., The quasistationary phase field equations with Neumann boundary conditions. J. Differential Equations, 162, n. 2, 2000, 473-503. Zbl0963.35188MR1751714DOI10.1006/jdeq.1999.3679
  28. VISINTIN, A., Stefan problem with phase relaxation. IMA J. Appl. Math., 34, n. 3, 1985, 225-245. Zbl0585.35053MR804824DOI10.1093/imamat/34.3.225
  29. VISINTIN, A., Models of Phase Transitions. Birkhäuser, Boston1996. Zbl0882.35004MR1423808DOI10.1007/978-1-4612-4078-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.