Existence and approximation results for gradient flows
Riccarda Rossi; Giuseppe Savaré
- Volume: 15, Issue: 3-4, page 183-196
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topRossi, Riccarda, and Savaré, Giuseppe. "Existence and approximation results for gradient flows." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.3-4 (2004): 183-196. <http://eudml.org/doc/252318>.
@article{Rossi2004,
abstract = {This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space $H$\[
\{\left\lbrace \begin\{array\}\{ll\}
u^\{\prime \}(t) + \partial \phi (u(t)) \ni 0 \quad \text\{a.e. in\} \, (0,T),\\
u(0) = u\_\{0\},
\end\{array\}\right.\}
\]
where $\phi : H \rightarrow (-\infty , +\infty \,]$ is a proper, lower semicontinuous functional which is not supposed to be a (smooth perturbation of a) convex functional and $\partial \phi $ is (a suitable limiting version of) its subdifferential. The interest for this kind of equations is motivated by a number of examples, which show that several mathematical models describing phase transitions phenomena and leading to systems of evolutionary PDEs have a common gradient flow structure. In particular, when quasi-stationary models are considered, highly non-convex functionals naturally arise. We will present some existence results for the solution of the gradient flow equation by exploiting a variational approximation technique, featuring some ideas from the theory of Minimizing Movements.},
author = {Rossi, Riccarda, Savaré, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Phase transitions; Evolution problems; Gradient flows; Minimizing Movements; Minimizing movements},
language = {eng},
month = {12},
number = {3-4},
pages = {183-196},
publisher = {Accademia Nazionale dei Lincei},
title = {Existence and approximation results for gradient flows},
url = {http://eudml.org/doc/252318},
volume = {15},
year = {2004},
}
TY - JOUR
AU - Rossi, Riccarda
AU - Savaré, Giuseppe
TI - Existence and approximation results for gradient flows
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/12//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 3-4
SP - 183
EP - 196
AB - This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space $H$\[
{\left\lbrace \begin{array}{ll}
u^{\prime }(t) + \partial \phi (u(t)) \ni 0 \quad \text{a.e. in} \, (0,T),\\
u(0) = u_{0},
\end{array}\right.}
\]
where $\phi : H \rightarrow (-\infty , +\infty \,]$ is a proper, lower semicontinuous functional which is not supposed to be a (smooth perturbation of a) convex functional and $\partial \phi $ is (a suitable limiting version of) its subdifferential. The interest for this kind of equations is motivated by a number of examples, which show that several mathematical models describing phase transitions phenomena and leading to systems of evolutionary PDEs have a common gradient flow structure. In particular, when quasi-stationary models are considered, highly non-convex functionals naturally arise. We will present some existence results for the solution of the gradient flow equation by exploiting a variational approximation technique, featuring some ideas from the theory of Minimizing Movements.
LA - eng
KW - Phase transitions; Evolution problems; Gradient flows; Minimizing Movements; Minimizing movements
UR - http://eudml.org/doc/252318
ER -
References
top- ALMGREN, F. - TAYLOR, J.E. - WANG, L., Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, n. 2, 1993, 387-438. Zbl0783.35002MR1205983DOI10.1137/0331020
- AMBROSIO, L., Minimizing Movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 19, n. 5, 1995, 191-246. Zbl0957.49029MR1387558
- AMBROSIO, L. - GIGLI, N. - SAVARÉ, G., Gradient Flows. Lecture Notes in Mathematics ETH Zürich, Birkhäuser, Basel. To appear.
- BAIOCCHI, C., Discretization of evolution variational inequalities. In: F. COLOMBINI - A. MARINO - L. MODICA - S. SPAGNOLO (eds.), Partial differential equations and the calculus of variations. Vol I, Birkäuser, Boston1989, 59-62. Zbl0677.65068MR1034002
- BRESSAN, A. - CELLINA, A. - COLOMBO, G., Upper semicontinuous differential inclusions without convexity. Proc. Amer. Math. Soc., 106, n. 3, 1989, 771-775. Zbl0698.34014MR969314DOI10.2307/2047434
- BREZIS, H., On some degenerate nonlinear parabolic equations. Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968), Amer. Math. Soc., Providence, R.I., 1970, 28-38. Zbl0231.47034MR273468
- BREZIS, H., Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. Nonlinear Functional Analysis, Proc. Sympos. Math. Res. Center, Univ. Wisconsin, Madison1971, Academic Press, New York1971, 101-156. Zbl0278.47033MR394323
- BREZIS, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Math. Stud., No. 5, North-Holland, Amsterdam1973. Zbl0252.47055MR348562
- CAGINALP, G., An analysis of a phase field model of a free boundary. Arch. Rational Mech. Anal., 92, 1986, 205-245. Zbl0608.35080MR816623DOI10.1007/BF00254827
- CAGINALP, G., Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. Phys. Rev. A (3), 39, n. 11, 1989, 5887-5896. Zbl1027.80505MR998924DOI10.1103/PhysRevA.39.5887
- CRANDALL, M.G. - LIGGETT, T.M., Generation of semigroups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 1971, 265-298. Zbl0226.47038MR287357
- CRANDALL, M.G. - PAZY, A., Semigroups of nonlinear contractions and dissipative sets. J. Functional Analysis, 3, 1969, 376-418. Zbl0182.18903MR243383
- DE GIORGI, E. - MARINO, A. - TOSQUES, M., Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acc. Lincei Rend. fis., s. 8, v. 68, 1980, 180-187. Zbl0465.47041MR636814
- DE GIORGI, E., New problems on minimizing movements. In: C. BAIOCCHI - J.-L. LIONS (eds.), Boundary Value Problems for PDE and Applications. Masson, 1993, 81-98. Zbl0851.35052MR1260440
- JORDAN, R. - KINDERLEHRER, D. - Otto, F., The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal., 29, n. 1, 1998, 1-17. Zbl0915.35120MR1617171DOI10.1137/S0036141096303359
- KOMURA, Y., Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan, 19, 1967, 493-507. Zbl0163.38302MR216342
- LEVITAS, V.I. - MIELKE, A. - THEIL, F., A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal., 162, n. 2, 2002, 137-177. Zbl1012.74054MR1897379DOI10.1007/s002050200194
- LUCKHAUS, S., Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature. European J. Appl. Math., 1, n. 2, 1990, 101-111. Zbl0734.35159MR1117346DOI10.1017/S0956792500000103
- MARINO, A. - SACCON, C. - TOSQUES, M., Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16, n. 2, 1989, 281-330. Zbl0699.49015MR1041899
- MODICA, L., Gradient theory of phase transitions and minimal interface criterion. Arch. Rational Mech. Anal., 98, 1986, 123-142. Zbl0616.76004MR866718DOI10.1007/BF00251230
- MODICA, L. - MORTOLA, S., Un esempio di -convergenza. Boll. Un. Mat. Ital. B, 14, 1977, 285-299. Zbl0356.49008MR445362
- NOCHETTO, R. - SAVARÉ, G. - VERDI, C., A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math., 53, n. 5, 2000, 525-589. Zbl1021.65047MR1737503DOI10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M
- PLOTNIKOV, P.I. - STAROVOITOV, V.N., The Stefan problem with surface tension as the limit of a phase field model. Differential Equations, 29, 1993, 395-404. Zbl0802.35165MR1236334
- ROSSI, R. - SAVARÉ, G., Gradient flows of non convex functionals in Hilbert spaces and applications. Preprint IMATI-CNR, n. 7-PV, 2004, 1-45. Zbl1116.34048
- RULLA, J., Error analysis for implicit approximations to solutions to Cauchy problems. SIAM J. Numer. Anal., 33, n. 1, 1996, 68-87. Zbl0855.65102MR1377244DOI10.1137/0733005
- SAVARÉ, G., Weak solutions and maximal regularity for abstract evolution inequalities. Adv. Math. Sci. Appl., 6, n. 2, 1996, 377-418. Zbl0858.35073MR1411975
- SCHÄTZLE, R., The quasistationary phase field equations with Neumann boundary conditions. J. Differential Equations, 162, n. 2, 2000, 473-503. Zbl0963.35188MR1751714DOI10.1006/jdeq.1999.3679
- VISINTIN, A., Stefan problem with phase relaxation. IMA J. Appl. Math., 34, n. 3, 1985, 225-245. Zbl0585.35053MR804824DOI10.1093/imamat/34.3.225
- VISINTIN, A., Models of Phase Transitions. Birkhäuser, Boston1996. Zbl0882.35004MR1423808DOI10.1007/978-1-4612-4078-5
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.