A semidiscretization scheme for a phase-field type model for solidification.
This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space
A linearly convergent iterative algorithm that approximates the rank-1 convex envelope of a given function , i.e. the largest function below which is convex along all rank-1 lines, is established. The proposed algorithm is a modified version of an approximation scheme due to Dolzmann and Walkington.
A linearly convergent iterative algorithm that approximates the rank-1 convex envelope of a given function , i.e. the largest function below f which is convex along all rank-1 lines, is established. The proposed algorithm is a modified version of an approximation scheme due to Dolzmann and Walkington.
The paper presents an application of the inverse analysis to the identification of two models: a phase transformation model and a rheological model. The optimization algorithm for the inverse analysis was tested for various techniques of searching for the minimum: derivative-free and gradient methods, as well as genetic algorithms. Simulation results were validated for microalloyed niobium steel. An optimization strategy, which is adequate for the inverse analysis, is suggested.
We prove the periodicity of all H2-local minimizers with low energy for a one-dimensional higher order variational problem. The results extend and complement an earlier work of Stefan Müller which concerns the structure of global minimizer. The energy functional studied in this work is motivated by the investigation of coherent solid phase transformations and the competition between the effects from regularization and formation of small scale structures. With a special choice of a bilinear double...