Displaying similar documents to “A counterexample to Schauder estimates for elliptic operators with unbounded coefficients”

Global Schauder estimates for a class of degenerate Kolmogorov equations

Enrico Priola (2009)

Studia Mathematica

Similarity:

We consider a class of possibly degenerate second order elliptic operators on ℝⁿ. This class includes hypoelliptic Ornstein-Uhlenbeck type operators having an additional first order term with unbounded coefficients. We establish global Schauder estimates in Hölder spaces both for elliptic equations and for parabolic Cauchy problems involving . The Hölder spaces in question are defined with respect to a possibly non-Euclidean metric related to the operator . Schauder estimates are deduced...

The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are hölder continuous with respect to space variables

Davide Guidetti (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We give a new proof, based on analytic semigroup methods, of a maximal regularity result concerning the classical Cauchy-Dirichlet's boundary value problem for second order parabolic equations. More specifically, we find necessary and sufficient conditions on the data in order to have a strict solution u which is bounded with values in C 2 + θ Ω ¯ (0 < < 1), with t u bounded with values in C θ Ω ¯ .

Carleman estimates for a subelliptic operator and unique continuation

Nicola Garofalo, Zhongwei Shen (1994)

Annales de l'institut Fourier

Similarity:

We establish a Carleman type inequality for the subelliptic operator = Δ z + | x | 2 t 2 in n + 1 , n 2 , where z n , t . As a consequence, we show that - + V has the strong unique continuation property at points of the degeneracy manifold { ( 0 , t ) n + 1 | t } if the potential V is locally in certain L p spaces.