On the uniqueness and simplicity of the principal eigenvalue

Marcello Lucia

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2005)

  • Volume: 16, Issue: 2, page 133-142
  • ISSN: 1120-6330

Abstract

top
Given an open set Ω of R N N > 2 , bounded or unbounded, and a function w L N 2 Ω with w + 0 but allowed to change sign, we give a short proof that the positive principal eigenvalue of the problem - u = λ w x u , u D 0 1 , 2 Ω is unique and simple. We apply this result to study unbounded Palais-Smale sequences as well as to give a priori estimates on the set of critical points of functionals of the type I u = 1 2 Ω u 2 d x - Ω G x , u d x , u D 0 1 , 2 Ω , when G has a subquadratic growth at infinity.

How to cite

top

Lucia, Marcello. "On the uniqueness and simplicity of the principal eigenvalue." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.2 (2005): 133-142. <http://eudml.org/doc/252327>.

@article{Lucia2005,
abstract = {Given an open set $\Omega$ of $\mathbb\{R\}^\{N\}$$(N > 2)$, bounded or unbounded, and a function $w \in L^\{\frac\{N\}\{2\}\} (\Omega)$ with $w^\{+\}\neq 0$ but allowed to change sign, we give a short proof that the positive principal eigenvalue of the problem $$ - \triangle u = \lambda w (x) u, \qquad u \in \mathcal\{D\}^\{1,2\}\_\{0\} (\Omega)$$ is unique and simple. We apply this result to study unbounded Palais-Smale sequences as well as to give a priori estimates on the set of critical points of functionals of the type $$I(u) = \frac\{1\}\{2\}\int\_\{\Omega\} |\nabla u|^\{2\} \, dx - \int\_\{\Omega\} G(x,u) \, dx, \quad u \in \mathcal\{D\}^\{1,2\}\_\{0\} (\Omega),$$ when $G$ has a subquadratic growth at infinity.},
author = {Lucia, Marcello},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Principal eigenvalue; Simple eigenvalue; Capacity; Palais Smale sequence; principal eigenvalue; simple eigenvalue; capacity; Palais-Smale sequence},
language = {eng},
month = {6},
number = {2},
pages = {133-142},
publisher = {Accademia Nazionale dei Lincei},
title = {On the uniqueness and simplicity of the principal eigenvalue},
url = {http://eudml.org/doc/252327},
volume = {16},
year = {2005},
}

TY - JOUR
AU - Lucia, Marcello
TI - On the uniqueness and simplicity of the principal eigenvalue
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/6//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 2
SP - 133
EP - 142
AB - Given an open set $\Omega$ of $\mathbb{R}^{N}$$(N > 2)$, bounded or unbounded, and a function $w \in L^{\frac{N}{2}} (\Omega)$ with $w^{+}\neq 0$ but allowed to change sign, we give a short proof that the positive principal eigenvalue of the problem $$ - \triangle u = \lambda w (x) u, \qquad u \in \mathcal{D}^{1,2}_{0} (\Omega)$$ is unique and simple. We apply this result to study unbounded Palais-Smale sequences as well as to give a priori estimates on the set of critical points of functionals of the type $$I(u) = \frac{1}{2}\int_{\Omega} |\nabla u|^{2} \, dx - \int_{\Omega} G(x,u) \, dx, \quad u \in \mathcal{D}^{1,2}_{0} (\Omega),$$ when $G$ has a subquadratic growth at infinity.
LA - eng
KW - Principal eigenvalue; Simple eigenvalue; Capacity; Palais Smale sequence; principal eigenvalue; simple eigenvalue; capacity; Palais-Smale sequence
UR - http://eudml.org/doc/252327
ER -

References

top
  1. ALLEGRETTO, W., Principal eigenvalues for indefinite-weight elliptic problems on R N . Proc. Am. Math. Monthly, 116, 1992, 701-706. Zbl0764.35031MR1098396DOI10.2307/2159436
  2. ANCONA, A., Une propriété d'invariance des ensembles absorbants par perturbation d'un opérateur elliptique. Comm. PDE, 4, 1979, 321-337. Zbl0459.35027MR525774DOI10.1080/03605307908820097
  3. BERESTYCKI, H. - NIRENBERG, L. - VARADHAN, S.R.S., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Comm. Pure Appl. math., 47, 1994, 47-92. Zbl0806.35129MR1258192DOI10.1002/cpa.3160470105
  4. BREZIS, H. - PONCE, A., Remarks on the strong maximum principle. Differential Integral Equations, 16, 2003, 1-12. Zbl1065.35082MR1948870
  5. BROWN, K.J. - COSNER, C. - FLECKINGER, J., Principal eigenvalues for problems with indefinite weight function on R N . Proc. Amer. Math. Soc., 109, 1990, 147-155. Zbl0726.35089MR1007489DOI10.2307/2048374
  6. BROWN, K.J. - STAVRAKAKIS, N., Global Bifurcation results for a semilinear elliptic equation on all of R N . Duke Math. J., 85, 1996, 77-94. Zbl0862.35010MR1412438DOI10.1215/S0012-7094-96-08503-8
  7. CUESTA, M., Eigenvalue problems for the p -Laplacian with indefinite weights. Electron. J. Differential Equations, 33, 2001, 1-9. Zbl0964.35110MR1836801
  8. DE FIGUEIREDO, D.G., Positive solutions of semilinear elliptic problems, Differential equations. Lecture Notes in Math., 957, Springer-Verlag, Berlin1982, 34-87. Zbl0506.35038MR679140
  9. EVANS, L.C. - GARIEPY, R.F., Measure Theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
  10. GILBARG, D. - TRUDINGER, N.S., Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin1983. Zbl0562.35001MR737190
  11. HESS, P. - KATO, T., On some linear and nonlinear eigenvalue problems with an indefinite weight function. Comm. PDE, 5, 1980, 999-1030. Zbl0477.35075MR588690DOI10.1080/03605308008820162
  12. LUCIA, M. - MAGRONE, P. - ZHOU, H.S., A Dirichlet problem with asymptotically linear and changing sign nonlinearity. Rev. Mat. Comput., 16, 2003, 465-481. Zbl1086.35048MR2032928
  13. MANES, A. - MICHELETTI, A.M., Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Bollettino U.M.I., 7, 1973, 285-301. Zbl0275.49042MR344663
  14. STAMPACCHIA, G., Équations elliptiques du second ordre à coefficients discontinus. Les Presses de l'Université de Montréal, Montréal1966. Zbl0151.15501MR251373
  15. SZULKIN, A. - WILLEM, M., Eigenvalue problems with indefinite weight. Studia Math., 135, 1999, 191-201. Zbl0931.35121MR1690753
  16. TERTIKAS, A., Uniqueness and nonuniqueness of positive solutions for a semilinear elliptic equation in R N . Diff. and Int. Eqns., 8, 1995, 829-848. Zbl0823.35052MR1306594
  17. ZHOU, H.S., An application of a mountain pass theorem. Acta Math. Sinica (N.S.), 18, 2002, 27-36. Zbl1018.35020MR1894835DOI10.1007/s101140100147

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.