On the uniqueness and simplicity of the principal eigenvalue
- Volume: 16, Issue: 2, page 133-142
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topLucia, Marcello. "On the uniqueness and simplicity of the principal eigenvalue." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.2 (2005): 133-142. <http://eudml.org/doc/252327>.
@article{Lucia2005,
abstract = {Given an open set $\Omega$ of $\mathbb\{R\}^\{N\}$$(N > 2)$, bounded or unbounded, and a function $w \in L^\{\frac\{N\}\{2\}\} (\Omega)$ with $w^\{+\}\neq 0$ but allowed to change sign, we give a short proof that the positive principal eigenvalue of the problem
$$ - \triangle u = \lambda w (x) u, \qquad u \in \mathcal\{D\}^\{1,2\}\_\{0\} (\Omega)$$
is unique and simple. We apply this result to study unbounded Palais-Smale sequences as well as to give a priori estimates on the set of critical points of functionals of the type
$$I(u) = \frac\{1\}\{2\}\int\_\{\Omega\} |\nabla u|^\{2\} \, dx - \int\_\{\Omega\} G(x,u) \, dx, \quad u \in \mathcal\{D\}^\{1,2\}\_\{0\} (\Omega),$$
when $G$ has a subquadratic growth at infinity.},
author = {Lucia, Marcello},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Principal eigenvalue; Simple eigenvalue; Capacity; Palais Smale sequence; principal eigenvalue; simple eigenvalue; capacity; Palais-Smale sequence},
language = {eng},
month = {6},
number = {2},
pages = {133-142},
publisher = {Accademia Nazionale dei Lincei},
title = {On the uniqueness and simplicity of the principal eigenvalue},
url = {http://eudml.org/doc/252327},
volume = {16},
year = {2005},
}
TY - JOUR
AU - Lucia, Marcello
TI - On the uniqueness and simplicity of the principal eigenvalue
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/6//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 2
SP - 133
EP - 142
AB - Given an open set $\Omega$ of $\mathbb{R}^{N}$$(N > 2)$, bounded or unbounded, and a function $w \in L^{\frac{N}{2}} (\Omega)$ with $w^{+}\neq 0$ but allowed to change sign, we give a short proof that the positive principal eigenvalue of the problem
$$ - \triangle u = \lambda w (x) u, \qquad u \in \mathcal{D}^{1,2}_{0} (\Omega)$$
is unique and simple. We apply this result to study unbounded Palais-Smale sequences as well as to give a priori estimates on the set of critical points of functionals of the type
$$I(u) = \frac{1}{2}\int_{\Omega} |\nabla u|^{2} \, dx - \int_{\Omega} G(x,u) \, dx, \quad u \in \mathcal{D}^{1,2}_{0} (\Omega),$$
when $G$ has a subquadratic growth at infinity.
LA - eng
KW - Principal eigenvalue; Simple eigenvalue; Capacity; Palais Smale sequence; principal eigenvalue; simple eigenvalue; capacity; Palais-Smale sequence
UR - http://eudml.org/doc/252327
ER -
References
top- ALLEGRETTO, W., Principal eigenvalues for indefinite-weight elliptic problems on . Proc. Am. Math. Monthly, 116, 1992, 701-706. Zbl0764.35031MR1098396DOI10.2307/2159436
- ANCONA, A., Une propriété d'invariance des ensembles absorbants par perturbation d'un opérateur elliptique. Comm. PDE, 4, 1979, 321-337. Zbl0459.35027MR525774DOI10.1080/03605307908820097
- BERESTYCKI, H. - NIRENBERG, L. - VARADHAN, S.R.S., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Comm. Pure Appl. math., 47, 1994, 47-92. Zbl0806.35129MR1258192DOI10.1002/cpa.3160470105
- BREZIS, H. - PONCE, A., Remarks on the strong maximum principle. Differential Integral Equations, 16, 2003, 1-12. Zbl1065.35082MR1948870
- BROWN, K.J. - COSNER, C. - FLECKINGER, J., Principal eigenvalues for problems with indefinite weight function on . Proc. Amer. Math. Soc., 109, 1990, 147-155. Zbl0726.35089MR1007489DOI10.2307/2048374
- BROWN, K.J. - STAVRAKAKIS, N., Global Bifurcation results for a semilinear elliptic equation on all of . Duke Math. J., 85, 1996, 77-94. Zbl0862.35010MR1412438DOI10.1215/S0012-7094-96-08503-8
- CUESTA, M., Eigenvalue problems for the -Laplacian with indefinite weights. Electron. J. Differential Equations, 33, 2001, 1-9. Zbl0964.35110MR1836801
- DE FIGUEIREDO, D.G., Positive solutions of semilinear elliptic problems, Differential equations. Lecture Notes in Math., 957, Springer-Verlag, Berlin1982, 34-87. Zbl0506.35038MR679140
- EVANS, L.C. - GARIEPY, R.F., Measure Theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
- GILBARG, D. - TRUDINGER, N.S., Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin1983. Zbl0562.35001MR737190
- HESS, P. - KATO, T., On some linear and nonlinear eigenvalue problems with an indefinite weight function. Comm. PDE, 5, 1980, 999-1030. Zbl0477.35075MR588690DOI10.1080/03605308008820162
- LUCIA, M. - MAGRONE, P. - ZHOU, H.S., A Dirichlet problem with asymptotically linear and changing sign nonlinearity. Rev. Mat. Comput., 16, 2003, 465-481. Zbl1086.35048MR2032928
- MANES, A. - MICHELETTI, A.M., Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Bollettino U.M.I., 7, 1973, 285-301. Zbl0275.49042MR344663
- STAMPACCHIA, G., Équations elliptiques du second ordre à coefficients discontinus. Les Presses de l'Université de Montréal, Montréal1966. Zbl0151.15501MR251373
- SZULKIN, A. - WILLEM, M., Eigenvalue problems with indefinite weight. Studia Math., 135, 1999, 191-201. Zbl0931.35121MR1690753
- TERTIKAS, A., Uniqueness and nonuniqueness of positive solutions for a semilinear elliptic equation in . Diff. and Int. Eqns., 8, 1995, 829-848. Zbl0823.35052MR1306594
- ZHOU, H.S., An application of a mountain pass theorem. Acta Math. Sinica (N.S.), 18, 2002, 27-36. Zbl1018.35020MR1894835DOI10.1007/s101140100147
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.